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Preface

This volume contains abstracts of talks presented at the 13th Workshop on Models and
Algorithms for Planning and Scheduling Problems (MAPSP 2017), held from June 12
to June 16, 2017, in Seeon Abbey in Seeon-Seebruck, Germany.

MAPSP is a biennial workshop dedicated to all theoretical and practical aspects of
scheduling, planning, and timetabling. Previous MAPSP meetings have been held in
Menaggio, Italy (1993), Wernigerode, Germany (1995), Cambridge, UK (1997), Renesse,
Netherlands (1999), Aussois, France (2001 and 2003), Siena, Italy (2005), Istanbul,
Turkey (2007), Kerkrade, Netherlands (2009), Nymburk, Czech Republic (2011), Pont
á Mousson, France (2013) and La Roche-en-Ardenne, Belgium (2015).

The abstracts in this volume include 5 invited talks by Nikhil Bansal, Bernhard Häupler,
Monika Henzinger, Jochen Könemann and Rolf H. Möhring plus 85 contributed talks.
Each submission was reviewed by at least two program committee members.

Submitted papers are presented in three parallel tracks. We adopted the policy of
MAPSP 2015 and surveyed participants’ preferences for attending talks. Frits Spieksma
(organizer of MAPSP 2015) and Bart Vangerven kindly constructed a schedule that
maximizes total attendance and satisfaction according to the given preferences.

We thank all sponsors of MAPSP 2017 for their generous funding. The conference is
supported by the German Research Foundation (DFG), the Association of European
Operational Research Societies (EURO), the German Operations Research Society
(GOR), the company Optineon, the Technical University of Munich, and the University
of Bremen.

Special thanks also to Marek Adamczyk for maintaining the webpage, Franziska Eberle
for producing the proceedings, Eva Simon and Jamila Tazit for organization and to the
helping hands Daniel Schmidt gen. Waldschmidt and Benedikt Plank.

We thank the referees, and the members of the organizing committee for making
MAPSP 2017 possible.

On behalf of the Program Committee of MAPSP 2017,

Leen Stougie (Chair).
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Some Open Problems in Scheduling

Nikhil Bansal ∗

The survey ”Polynomial time approximation algorithms for machine scheduling: Ten
open problems” by P. Schuurman and G.J. Woeginger from 1999 has had an important
impact on scheduling research, and many prominent open problems mentioned there have
now been solved. I will revisit some of these problems, highlight the recent progress and
the main ideas involved, and describe some new problems and directions of my own.

∗n.bansal@tue.nl. Department of Mathematics and Computer Science, Eindhoven University of
Technology.
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Low-Congestion Shortcuts: Routing for Distributed

Optimization Algorithms

Bernhard Häupler ∗

How fast a distributed optimization problem can be solved in a given network depends
in a highly non-trivial manner on the topology of the network. This talk will introduce
a simple routing problem and a related graph structure, called low-congestion shortcuts,
which often tightly characterize and capture this dependency.

∗haeupler@cs.cmu.edu. School of Computer Science, Carnegie Mellon University.
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Local Flow Partitioning for Faster Edge Connectivity or

Flow Beats PageRank

Monika Henzinger ∗

We present a new deterministic algorithm for computing the unweighted minimum
cut, aka edge connectivity, of an undirected graph with n nodes and m edges in time
O(m log2 n log log2 n). It improves the previous break-through result by Kawarabayashi
and Thorup, which uses a PageRank-based subroutine and takes time O(m log1 2n). To
achieve the running time improvement we replace the PageRank-based computation by
a flow-based computation. Note that our algorithm is also faster than the fastest ran-
domized algorithm for this problem, which is Karger’s 1996 O(m log3 n)-time algorithm.

This is joint work with Satish Rao and Di Wang and appeared at SODA 2017.

∗monika.henzinger@univie.ac.at. Faculty of Computer Science, Universität Wien.
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Improved Approximation for Tree Augmentation via

Chvatal Gomory Cuts

Jochen Könemann ∗

In the weighted tree augmentation problem (WTAP) we are given a tree T in a graph
G = (V,E). Edges in E \ T are called links and carry non-negative weights. The goal is
to find a minimum-weight set L of links such that T + L is 2-edge-connected.

WTAP is a classical NP- and APX-hard network design problem (even when all
links have weight 1; call this TAP). The best known approximation algorithm achieves a
performance guarantee of 2 (due to Fredrickson & Jaja). Kortsarz and Nutov improved
this to 3/2 in the special case of TAP. Very recently Adjashvili gave a 1.96-approximation
for WTAP whenever link weights are bounded, and a 5/3-approximation for TAP.

We show how to improve the result of Adjashvili and obtain a 3/2-approximation for
both weighted and unweighted tree augmentation in the bounded link weight setting.
The key ingredient is a strengthened linear programming formulation for WTAP.

This is joint work with Martin Gross, Samuel Fiorini and Laura Sanita; see
https://arxiv.org/abs/1702.05567.

∗jochen@uwaterloo.ca. Department of Combinatorics and Optimization, University of Waterloo.
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Online Scheduling of Bidirectional Traffic

Rolf Möhring ∗

We introduce, discuss, and solve a hard practical optimization problem that deals
with routing bidirectional traffic on a line. This situation occurs in train traffic on a single
track with sidings, in ship traffic in a canal, or in bidirectional data communication.

We illustrate our methods and algorithms on the Kiel Canal, which is the world ’92s
busiest artificial waterway with more passages than the Panama and Suez Canal together.
The scheduling problem arises from scarce resources (sidings) that are the only locations
where large ships can pass each other in opposing directions. This requires decisions on
who should wait for whom (scheduling), in which siding to wait (packing) and when and
how far to steer a ship between sidings (routing), and all this for online arriving ships at
both sides of the canal. We have developed a combinatorial algorithm that provides a
unified view of routing and scheduling that combines simultaneous (global) and sequen-
tial (local) solution approaches to allocate scarce network resources to a stream of online
arriving vehicles in a collision-free manner. Computational experiments on real traffic
data with results obtained by human expert planners show that our algorithm improves
upon manual planning by 25%. This combination of routing and scheduling (without
the packing) leads to a new class of scheduling problems, and we will also address recent
complexity and approximation results for this class.

The lecture is based on joint work with Elisabeth Lübbecke and Marco Lübbecke.

∗Rolf.Moehring@tu-berlin.de. Institut für Mathematik, Technische Universität Berlin.
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On Scheduling with a Sharable Resource

Peter Kling (Speaker) ∗ Alexander Mäcker † Sören Riechers ‡

Alexander Skopalik §

1 Introduction

Consider a system of m ∈ N processors and n ∈ N jobs from the set J := { 1, 2, . . . , n }.
There is a common resource that is to be shared by the processors. In each round t ∈ N0

each processor i is assigned a share Ri(t) ∈ [0, 1] of the resource, with the requirement
that

∑
i∈[m]Ri(t) ≤ 1 (i.e., the resource is not overused). Each processor can process

at most one job per round and each job can be processed by at most one processor. A
job j has a processing volume pj ∈ N and a resource requirement rj ∈ [0, 1]. Without
loss of generality (w.l.o.g.), r1 ≤ r2 ≤ · · · ≤ rn. The resource requirement specifies what
portion of the common resource is needed to process one unit of the job’s processing
volume during a round. More exactly, assume job j is processed by processor i during
round t. Then exactly min(Ri(t)/rj , 1) units of j’s processing volume are processed
during that round. A job is finished once all pj units of its processing volume have been
processed. Preemption and migration are not allowed. The objective is to find a schedule
S (i.e., a resource and job assignment) that minimizes the makespan. We refer to this
problem as Linear Shared Resource Job-Scheduling (LinSRJS).

LinSRJS is a variant (and arguably a more realistic version) of [1]. There, the au-
thors proposed and studied this type shared resource, but for the case when all jobs are
unit-size, have already been assigned to the different processors, and are to be finished in
a fixed order on each processor. Their results for this setting include NP-hardness (if m
is variable), an optimal algorithm for 2 processors, and a greedy algorithm achieving an
approximation ratio of 2− 1/m. Our model assumes no a priori assignment of jobs nor
any order constraints. Moreover, jobs of arbitrary sizes. This variant turns (unsurpris-
ingly) out to be NP-hard, even for unit size jobs. One of our main results is the design
and analysis of a simple polynomial time approximation algorithm with the following
guarantee:

Theorem 1 Our algorithm for Linear Shared Resource Job-Scheduling generates a valid
schedule with approximation ratio 2+ 2

m−2+o (1). If jobs have unit size, the approximation
ratio is 1 + 1

m−1 + o (1).

∗peter.kling@uni-hamburg.de. University of Hamburg, Vog-Kölln-Str. 30, 22527 Hamburg, Ger-
many.
†alexander.maecker@upb.de. Paderborn University, Fürstenallee 11, 33102 Paderborn, Germany.
‡soeren.riechers@upb.de. Paderborn University, Fürstenallee 11, 33102 Paderborn, Germany.
§alexander.skopalik@upb.de. Paderborn University, Fürstenallee 11, 33102 Paderborn, Germany.
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Additionally, we further generalize this model to a composed services setting: Here,
a number of services (tasks) T1, T2, . . . , TN is to be scheduled, where each task Ti is
composed of a number of (unit size) jobs (i.e., Ti = { ji,1, ji,2, . . . , ji,ni }). The objective
is to minimize the average completion time of the tasks (where a task is completed if
all its jobs are completed). We refer to this problem as Linear Shared Resource Task-
Scheduling (LinSRTS). Using Theorem 1 as a building block, we are able to derive an
algorithm with the following guarantee:

Theorem 2 Our algorithm for Linear Shared Resource Task-Scheduling generates a valid
schedule with approximation ratio 2 + 4

m−3 + o (1).

The rest of this abstract gives a brief overlook of the deisgn and analysis of our algorithm
for LinSRJS.

2 Overview: Algorithm & Analysis of LinSRJS

Given a schedule S for LinSRJS, consider a job j on processor i in round t. Assume
(w.l.o.g.) Ri(t) ≤ rj (otherwise set Ri(t) to rj to get a schedule with the same makespan).
Let t1 and t2 be the rounds when j was started and finished, respectively. We have∑t2

t=t1
Ri(t)/rj ≥ pj or, equivalently,

∑t2
t=t1

Ri(t) ≥ rj · pj . Thus, with sj := rj · pj as
the total resource requirement of job j, one can think of j of being finished once the
total resource shares it received while being processed sum up to sj . We define sj(t) :=
sj−

∑t
t′=t1

Ri(t
′) as the total resource requirement remaining after round t. Note that job

j is finished in the first round t for which sj(t) = 0. We use J(t) := { j ∈ J | sj(t) > 0 }
to denote the set of jobs that are not finished after round t.

An interesting observation is that, with this formulation, one can think of LinSRJS
as a bin packing variant. There are n items that are to be packed in bins of capcity 1.
Item j has size sj and can be split into parts, but each part cannot be larger than rj .
Moreover, each bin cannot contain more than m item parts. The goal is to minimize
the number of bins (corresponding to number of rounds in LinSRJS) necessary to pack
all items. If we would allow preemption in LinSRJS, this bin packing variant would
be equivalent to LinSRJS. Similar bin packing problems (without the constraint of a
maximal part size) have been considered in [2, 4, 3].

Our algorithm builds upon the central definition of maximal good job windows. To
define these, let U ⊆ J and define r(U) :=

∑
j∈U rj . Given t ∈ N, let st(U) :=

∑
j∈U sj(t).

We say a job j ∈ J(t) is fractured at time t if sj(t) = k · rj + qj(t) for some k ∈ N0 and
qj(t) ∈ (0, rj).

Definition 3 (Job Window) A subset of unfinished jobs W ⊆ J(t−1) is called a good
window (for round t) if it has the following properties:

(a) (consecutive) j1, j2 ∈W ⇒ J(t− 1) ∩ { j1, j1 + 1, . . . , j2 } ⊆W ,
(b) (window size) |W | ≤ m− 1,
(c) (at most one fractured) |{ j ∈W | qj(t− 1) > 0 }| ≤ 1,
(d) r(W \ {maxW }) < 1, and
(e) (contains all started jobs) j ∈ J(t− 1) \W ⇒ sj(t− 1) = sj.

We say W is maximal if, additionally, the following properties hold:

(f) |W | < m− 1⇒ minW = min J(t− 1) and
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(g) r(W ) < 1⇒ maxW = max J(t− 1).

We design our algorithm such that it has three key properties:

• During any round, it processes jobs from a maximal good window W .
• If during round t the window W is at the “left border” of the remaining jobs (i.e.,

minW = min J(t− 1)), then this holds for all t′ > t.
• If during round t the window W is at the “right border” of the remaining jobs (i.e.,

maxW = max J(t− 1)), then this holds for all t′ > t.

Note that if W is not at the left border of the remaining jobs, Properties (d) and (f)
imply that we can assign the resource such that at least m − 2 jobs receive their full
resource requirement rj . Similarly, if W is not at the right border of the remaining jobs,
Properties (b) and (g) imply that we can utilize the full resource. Now consider the first
round T such that the window W contains both min J(T − 1) and max J(T − 1). For
simplicity, assume the remaining (by Property (b) at most m − 1) jobs can be finished
during round T +1. By the above observations, either the schedule assigns at least m−2
jobs their full resource requirement in all but the last rounds, or the schedule utilizes the
full resource in all but the last rounds. In the former case we get an approximation ratio
of m

m−2 = 1 + Θ
(
1
m

)
(in each round, Opt can assign at most m jobs their full resource

requirement). In the latter case the computed schedule is optimal (we always use the full
resource). The bulk of the analysis goes towards proving that we can can always find
such a maximal good window.
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Restricted Assignment Scheduling with Resource

Constraints

Gyorgy Dosa∗ Hans Kellerer (Speaker) † Zsolt Tuza‡

1 Introduction

We are given a set N = {1, . . . , n} n of independent jobs that are to be scheduled on m
parallel machines M1, . . . ,Mm. In the Restricted Assignment problem (RA-problem, for
short) each job j can be executed on a specific subsetM(j) of the machines, and on those
machines the processing time of job j is pj . The objective is to minimize the makespan.
In the three field notation, we abbreviate this problem by R|pij ∈ {pj ,∞}|Cmax.

Assume that additionally there are µ renewable resources R1, . . . , Rµ. Let Λk be
the set of jobs which require resource Rk, and let λk denote the cardinality of set Λk,
k = 1, . . . , µ. Job j requires simultaneous availability of all resources in the set R(j) ⊆
{R1, . . . , Rµ} for processing; we denote by ρj the cardinality of R(j), j = 1, . . . , n. Any
resource can be used by only one job at any time. It means that two jobs which require
the same resource cannot be processed simultaneously. This problem is abbreviated by
R|pij ∈ {pj ,∞}, resµ11|Cmax. In the following, we will call it Restricted Assignment
with Resources problem, briefly RAR-problem. The degree of the problem is defined as
the quantity B = max

j=1,...,n
ρj , that is the maximum number of resources required by a job.

To the best knowledge of the authors, restricted assignment and resources were not
considered previously together. The two types of conditions, however, have been studied
separately.

The restricted assignment problem can be considered as a special case of the classical
unrelated machine problem R|·|Cmax, where job j on machine Mi has processing time pij .
The paper of Lenstra et al. [3] contains a polynomial-time 2-approximation algorithm
for R| · |Cmax. On the negative side it is proven that one cannot get any worst-case ratio
better than 3/2 for R| · |Cmax unless P = NP holds.

There are many papers considering Multiprocessor Scheduling With Resources,
MPSR for short. If each task requires at most one resource, i.e. B = 1, then MPSR with
unit-time jobs admits a polynomial-time algorithm for an arbitrary number of processors,
even with prescribed release times and deadlines [1]. On the other hand, for a variable
number of resources the problem of minimizing maximum lateness becomes NP-hard,
still with unit processing times of all the tasks, and already on just two processors [2].
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Egyetem u. 10, Hungary.
†hans.kellerer@uni-graz.at. Institut für Statistik und Operations Research, Universität Graz,
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2 Our Results

We prove inapproximability results and design approximation algorithms for the RAR-
problem. Our main negative result is that the problem with unit-time jobs is APX-hard,
already on three machines. In the case that each job requires only a bounded number of
resources, we design approximation algorithms with constant worst-case bound, without
any restrictions on processing times. For some special cases (e.g., unit-time jobs with
degree B = 1) we design optimal algorithms with polynomial running time.

To derive the main negative result, we prove a theorem on graph coloring, which
seems to be of interest on its own right, too. It states APX-hardness of the chromatic
number on a restricted class of graphs.

Our results can be stated as follows:

Theorem 1 The RAR-problem with unit-time jobs and two machines can be solved in
polynomial time.

Theorem 2 The RAR-problem with n unit-time jobs and m machines can be solved in
O((m3 +m2n) log n) time for B = 1.

Theorem 3 There is a polynomial-time (2−1/m+B)-approximation algorithm for the
RAR-problem on m machines with arbitrary processing times.

Theorem 4 There is a PTAS for the RAR-problem with a fixed number of machines
and B = 1.

Theorem 5 The following optimization problems are APX-complete:

(i) the Chromatic Number problem restricted to graphs of independence number 3,

(ii) the Minimum Clique Cover problem restricted to graphs whose clique number
is 3,

(iii) even more restrictively the Minimum Clique Cover problem on graphs whose
clique number is 3 and maximum degree is 4.

Theorem 6 The RAR-problem is APX-hard, even when it is restricted to the following
type of instances: there are only three machines, all jobs have unit time, any job can be
processed on any machine, and each resource is required only for two jobs.
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Minimizing the Sum of Completion Times Over Scenarios

Thomas Bosman (Speaker) ∗ Martijn van Ee † Csanád Imreh ‡

Alberto Marchetti-Spaccamela § Martin Skutella ¶ Leen Stougie ‖

1 Introduction

We consider scheduling over scenarios, driven by our curiosity how the mere existence
of scenarios affects the complexity of problems compared to their traditional single sce-
nario counterparts. In the sparse literature on optimization under scenarios, which has
appeared under various names, problems have been identified whose multiple scenario
versions are essentially harder than their (traditional) single scenario ones. An example
is the shortest path problem with a scenario specified by the destination [2].

In the context of scheduling under scenarios we consider a scenario defined as a subset
of a predefined and fully specified set of jobs. Specifically, we are given a set J of jobs
and a set of K scenarios S = {S1, . . . , SK}, with Sk ⊆ J , k = 1, . . . ,K. The aim is to
find a schedule of the whole set of jobs on machines, i.e. an assignment of all jobs to
machines and on each machine an order of the jobs assigned to it, such that the schedule,
obtained for the scenarios by simply skipping the jobs not in the scenario, optimizes a
function of the scheduling objective over all scenarios.

Feuerstein et al. [1] introduced this model for scheduling problems, and obtained
some intriguing results when considering the makespan as objective. In the “robust”
version of the scenario scheduling problem the maximum makespan over all scenarios
is minimized. This version we will refer to as the minmax version. In the “stochastic”
version the average or, equivalently, the sum over all scenarios is minimized, which we
will refer to as the minsum version.

The most natural next step is then to investigate the behaviour under scenarios of the
next most commonly studied objective: the sum of completion times, often called total
completion time. It is well known that minimizing total completion time on identical
parallel machines is done in polynomial time by the Shortest Processing Time first (SPT)
rule.

It is rather easy to adapt the proofs of the negative complexity results in [1] to obtain
similar results for the multiple scenario total completion time problem, even if all jobs
have unit processing time. However, for the minmax version the situation turns out
to be more dramatic: for the problem with general processing times, even if there are
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only 3 scenarios, the multiple scenario total completion time problem is already NP-
hard on 2 machines. If there are only 2 scenarios, the problem remains easy. Somewhat
surprisingly, for the minsum version of the problem with general processing times the
structure of optimal solutions can be exploited to arrive at a polynomial time dynamic
programming algorithm for a fixed number of scenarios and a fixed number of machines.
We conjecture that this is true in fact for any number of machines.

This raises the question if minsum scheduling problems that are easy in their single
scenario version remain easy under a fixed number of scenarios. To show that even such
a general statement does not hold, we introduce release dates and reservation costs in
the total completion time scheduling problem, allow preemption and use only a single
machine. Reservation costs means that we need to reserve a time unit if we wish to use
that time unit for scheduling jobs in any of the scenarios. We show that the minsum
version of this problem becomes NP-hard under 3 scenarios.

In the remainder we refer to the minmax version as MinMaxSTC (MinMax Sce-
nario scheduling with Total Completion time objective) and to the minsum version as
MinSumSTC.

2 Any number of scenarios makes it hard

As mentioned in the introduction, it is rather easy to adapt the proofs of the negative
complexity results mentioned above in [1] to obtain similar results for the multiple sce-
nario total completion time problem, even if all jobs have unit processing time. Notice
that their single scenario versions are trivial.

Proposition 1 For two machines and all jobs having unit processing times it is NP-hard
to approximate MinMaxSTC within a factor 2− ε.

Proposition 2 For two machines and all jobs having unit processing times it is NP-
hard to approximate MinSumSTC within ratio 1.011 even if all scenarios contain only
two jobs.

3 Minimizing the maximum over scenarios

In case of two scenarios, MinMaxSTC is polynomial time solvable on any number of
machines. Actually, we will prove an even stronger result: we can find, in polynomial
time, a schedule that minimizes the total completion time under each of the two scenarios.
On the other hand, we show that the problem is already hard for 3 scenarios and 2
machines. This basically settles the complexity of MinMaxSTC.

Theorem 3 For two scenarios a schedule that is optimal for both scenarios can be found
in polynomial time.

Theorem 4 MinMaxSTC is NP-hard for 3 scenarios and 2 machines.

4 Minimizing the sum over the scenarios

Theorem 5 MinSumSTC can be solved in polynomial time for any fixed number of
scenarios and any fixed number of machines.
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The algorithm is dynamic programming. Since we know the problem is hard for any
number of scenarios (see Section 2), it only leaves open the question if the problem can
be solved in polynomial time if we allow the number of machines to be part of the input.
The following conjecture, which we strongly believe to hold, would give an affirmative
answer to the question.

Conjecture 6 MinSumSTC has an optimal solution such that for every scenario k =
1, . . . ,K and each j = 1, . . . , n, the j largest jobs are assigned to the machines in such
a way that the difference in number of jobs assigned to each pair of machines is at most
k − 1, or more formally, using Ai as the set of jobs assigned to machine i,

max
i=...,m

|{h ∈ Ai ∩ Sk : h ≤ j}| − min
i=...,m

|{h ∈ Ai ∩ Sk : h ≤ j}| ≤ k − 1.

5 Hardness of a minsum problem with small number of
scenarios

Finally, we show that it is not generally true that minsum versions of scheduling problems
that are easy in their single scenario versions, remain easy for a fixed number of scenarios.
To this end, we consider a single machine problem with a release time rj for each job j
and allow jobs to be preempted. Less common is that we also introduce a reservation
cost. We pay c for each time unit that we use for scheduling jobs in any of the scenarios;
in other words, if we pay c for a time unit it can be used in all scenarios. The objective
is to minimize the sum of the flow times over all scenarios and the total reservation cost.
A little thought should make it clear that in the single scenario version the problem
is solved by scheduling jobs according to the Shortest Remaining Processing Time first
(SRPT) rule and reserving exactly

∑
j pj non-idle time units in that schedule.

Theorem 7 The scheduling problem described above with 3 scenarios is NP-hard.

6 Conclusion and open questions

We see as a main challenge to derive structural insights why multiple (fixed number
of) scenario versions are sometimes as easy as their single scenario versions, like the
scheduling problems that we have studied here, and for other problems become harder
or even NP- or APX-hard.
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Routing Open Shop: A Hierarchy of Superproblems

Ilya Chernykh (Speaker) ∗ Ekaterina Lgotina †

1 Introduction

The routing open shop problem being a generalization of the two classic discrete opti-
mization problems (open shop Om||Cmax and metric travelling salesman problem ∆TSP )
is considered. Note that both problems are strongly NP-hard in general case (see [9] and
[6] respectively.

In the open shop problem [7] given a set of jobs J = {J1, . . . , Jn} and a set of
machines M = {M1, . . . ,Mm}, one has to schedule operations of each job for each ma-
chine in an arbitrary sequence in such manner that operations of each job are processed
in separate time intervals. Processing times pji > 0 of operation of job Jj on machine
Mi are given. Preemptions are not allowed. The goal is to obtain a feasible schedule
minimizing the makespan (which in this case coincides with the maximum completion
time Cmax).

The metric TSP can be described by a complete edge-weighted graph G = 〈V,E〉,
where weight τpq > 0 of edge [p, q] represents the distance between nodes p and q.
Distances satisfy the triangle inequality. The goal is to find a hamiltonian tour H in G
with the minimal total weight |H| .= ∑

[p,q]∈U
τpq.

The routing open shop problem was introduced in [1, 2]. It combines inputs of
two problems mentioned in the following manner. Graph G = 〈V,E〉 (not necessary
a complete one) represents some transportation network. Jobs from J are distributed
between the nodes of graph G and have to be processed in an arbitrary order by each of
machines from M. The machines are considered to be mobile and are initially located
at the specified node referred to as the depot. (The depot is the only node allowed to
be job-free, although it may contain several jobs as any other node.) The machines
travel with unit speed using the shortest routes between nodes and have to arrive at
correspondent node to process the jobs from that node in open shop environment. After
performing all the operations machines have to return back to the depot. As soon as each
node with the possible exception of the depot contains at least one job it is necessary for
each machine to visit every node of the graph. The goal is to minimize the makespan:
the latest release moment over all machines, i.e. the moment when the machine has
returned to the depot after processing all of its operations. We denote that makespan
by Rmax and using the classic three-field notation (see for example [8]) we denote the
routing open shop problem as ROm||Rmax.
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Being a generalization of two NP-hard problems ROm||Rmax remains NP-hard in
the case of a single machine and in the case of a single node with m > 3 machines.
Surprisingly, it is also NP-hard in the simplest case RO2|G = K2|Rmax, when we have
only two machines and only two nodes of graph G (one of which being the depot) [1].
Detailed review can be found in [4] and references wherein.

In this paper we consider even further generalizations of the routing open shop prob-
lem introducing a hierarchy of superproblems. We will discuss conditions of reducibility
between those supercases and review several known as well as new results reformulated
for new supercases as general as possible.

2 Superproblems and main results

One possible line of generalization was introduced in [3]. It concerns individual travel
times of machines between nodes of G. That can be achieved either by assigning different
travel speed to each machine (uniform travel time or Qtt) or even considering unrelated
travel times (or Rtt) for each pair (machine, edge). Another branch of generalization
concerns replacing underlying open shop Om||Cmax with so called general open shop
problem Ōm||Cmax, in which each job instead of having a single operation for each
machine has a set of operations (possibly empty) to be performed by that machine. In
correspondent generalization of the routing open shop RŌm||Rmax each machine has
specific set of nodes to visit.

These two branches can both be generalized by the superproblem in which each
machine Mi has its own graph Gi with different edge weighting functions.

Results we are willing to discuss and generalize include (but not limited to) the
following list:

1. Wide class of polynomially solvable subcases of RO2|G = tree|Rmax.

2. Linear time 6
5 -approximation algorithms for RO2|G = K2|Rmax [2] and RO2|G =

K3|Rmax [5].

3. Linear time exact algorithm for RO2|G = tree, variable − depot, Rtt|Rmax [3] (in
that setting the location of the depot is not predefined and has to be chosen by a
scheduler).
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Scheduling Data Gathering in 2-Level Tree Networks

Joanna Berlińska ∗

1 Introduction

Gathering data from remote processors is an important step of many contemporary
applications. The data may be obtained as a result of computations or by sensing the
environment. They have to be collected together for analysis, processing and storing.
Scheduling algorithms for data gathering networks were proposed, e.g., in [1, 2, 5, 7].

In this work we analyze data gathering in a 2-level tree network. The leaf nodes
of the network transfer data to intermediate nodes, which preprocess and merge them,
constructing new, intermediate datasets. These datasets have to be sent to a single
base station. The base station processes them and stores final results. Our goal is
to schedule communication and computations in the network so that the whole data
gathering process takes the shortest possible time.

2 Problem formulation

The data gathering network consists of a single base station P0, n intermediate nodes
P1, . . . , Pn and m leaf nodes Pjk. An intermediate node Pj gathers data from leaf nodes
Pjk for k = 1, . . . ,mj , where m1+. . .+mn = m. A subnetwork consisting of node Pj and
all nodes Pjk for given j will be denoted by Nj . It is assumed that all network nodes have
identical communication and computation capabilities, described by communication rate
(inverse of speed) C and computation rate A.

At time t = 0 each node Pjk holds dataset Djk of size αjk, which should be sent to Pj

(in time Cαjk). At most one leaf node can communicate with intermediate node Pj at a
time. After the transfer of dataset Djk is completed, this dataset can be preprocessed by
Pj , in time Aαjk. The results produced by Pj for all datasets Djk are concatenated and
constitute a new dataset Dj of size αj = γ

∑mj

k=1 αjk, where γ is a parameter describing
the relationship between the sizes of initial and intermediate data. Node Pj needs time
Cαj to transfer this dataset to the base station, which processes it in time Aαj . At most
one intermediate node can communicate with the base station at a time. It is assumed
that each dataset can be sent in many separate pieces, i.e. communication preemptions
are allowed. The scheduling problem is to minimize the total data gathering time T .
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3 Results

Let us first note that solving our scheduling problem can be divided in two steps. In
the first step a schedule for data gathering in each subnetwork Nj will be constructed
separately. As communication in a subnetwork is sequential, the analyzed problem
consists in makespan minimization in a 2-machine flow shop, where the communication
network is the first machine, and node Pj is the second machine. The two operations
of job k (k = 1, . . . ,mj) are sending and preprocessing dataset Djk. Therefore, the
problem can be solved in O(mj logmj) time using Johnson’s algorithm [6]. The minimum
makespan computed for subnetwork Nj will be denoted by rj . Thus, intermediate node
Pj is ready to start transferring data to the base station at time rj . The second step
is constructing a schedule for sending and processing the intermediate results. As the
communication between intermediate nodes and the base station is sequential, we have
to solve a special case of another flow shop scheduling problem, F2|rj , pmtn|Cmax, which
is known to be strongly NP-hard in general [4]. Let us remind that in our problem the
execution times of two operations of job j are equal to p1j = Cαj and p2j = Aαj , i.e.
we consider a proportionate flow shop with different machine speeds.

We first show that if αj = α for j = 1, . . . , n, i.e. all subnetworks Nj deliver
the same amounts of data, then the shortest schedule can be computed in O(n log n)
time. Namely, every time the communication network becomes idle or a new dataset is
released, an available dataset with the shortest remaining transfer time should be chosen
for sending. Note that αj = α does not mean that release times rj have to be equal,
since the subnetworks may contain different numbers of leaf nodes holding datasets of
different sizes αjk which sum up to α/γ.

For the general case with different αj we analyze the following communication
scheduling algorithm.

1. Let J = {1, 2, . . . , n} and t = minj∈J{rj}.

2. Find the set of available jobs A = {j|j ∈ J, rj ≤ t} and t′ = min{rj |rj > t, j ∈ J}.
Choose a job j in A according to Johnson’s rule [6].

3. Let L = min{p1j , t′− t}. If p1j ≤ L, schedule the transfer of dataset Dj in interval
[t, t+p1j) and set J = J \{j}. In the opposite case schedule the transfer of dataset
Dj in interval [t, t+ L) and set p1j = p1j − L.

4. If J 6= ∅, set t = t+ L and go to step 2.

Thus, every time the communication network becomes idle or a new dataset is released,
the dataset to be transferred is chosen according to Johnson’s rule. The datasets are
processed by the base station in the order in which they are received. We show that

• If C ≤ A, the above algorithm computes the shortest possible schedule, since our
problem boils down to a special case of F2|rj , 1-min, pmtn|Cmax [3].

• If C > A, the algorithm does not always produce the optimum solution.

The case with C > A is further analyzed in order to identify additional conditions under
which the considered algorithm is guaranteed to deliver optimum results.
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4 Conclusions and future work

We showed that the analyzed data gathering scheduling problem can be solved in poly-
nomial time if C ≤ A or αj = α for j = 1, . . . , n. However, the complexity status of
the case with C > A and different αj remains open and should be investigated in the
future. A promising direction in constructing (exact or approximation) algorithms for
this problem may be analyzing the relationship between intermediate dataset sizes αj

and their release times rj .
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When Shop Scheduling Meets Dominoes,

Eulerian and Hamiltonian Paths

Jean-Charles Billaut ∗ Federico Della Croce (Speaker) † Fabio Salassa ‡

Vincent T’kindt §

1 Introduction

In this paper, we consider no-idle and no-wait shop scheduling problems with some
standard configurations namely flow shop, job shop and open shop. We focus on the
makespan, referred to as Cmax, as a performance measure. More precisely, we tackle
four distinct problems which, using the general three-field notation [4], can be denoted
as F2|no−idle, no−wait|Cmax for the 2-machine flow shop, J2|no−idle, no−wait|Cmax

for the for 2-machine job shop and O2|no− idle, no−wait|Cmax for the 2-machine open
shop. The m-machine flow shop problem is denoted as F |no− idle, no−wait|Cmax. We
refer first to problem F2|no − idle, no − wait|Cmax: n jobs are available at time zero;
each job j must be processed non-preemptively on two continuously available machines
M1,M2 with integer processing times p1,j , p2,j , respectively. The processing order is
M1 →M2 for all jobs. Each machine processes at most one job at a time and operations
of each job cannot overlap. For any sequence, [j] denotes the job in position j. The
objective is the minimization of the makespan.

With respect to the literature, to the best or our knowledge, few works have dealt
with the no-idle and no-wait constraints simultaneously. In [1], it is mentioned that both
problems F2|no−idle|∑Cj and F2|no−wait|∑Cj are NP -hard. Similar consideration
holds for problem F2|no−idle, no−wait|∑Cj . The relevant literature includes [3] where
it is shown that minimizing the number of interruptions on the last machine is solvable
in O(n2) time on two machines (the problem is denoted as F2|no − wait|G ) while it
is NP -hard on three machines or more. We remark that problems F2|no − wait|G
and F2|no− idle, no− wait|Cmax, even though close are not equivalent and an optimal
solution with no interruption of problem F2|no−wait|G may be non-optimal for problem
F2|no− idle, no−wait|Cmax. Consider a 2− job instance with processing times p1,1 = b,
p2,1 = a, p1,2 = a, p2,2 = b, with b > a. Then, sequence 1 − 2 is no-idle, no-wait,
has makespan C1−2

max = 2b + a and is optimal for problem F2|no − wait|G as it has no
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interruption. However, it is not optimal for problem F2|no − idle, no − wait|Cmax as
sequence 2− 1 is also no-idle, no-wait and has makespan C2−1

max = 2a + b < 2b + a.

In the next section we present some complexity results related to the four tackled
shop scheduling problems.

2 Main results

We first point out that the no − idle, no − wait constraint is very strong as it forces
consecutive jobs to share common processing times, namely, any feasible solution for
F2|no − idle, no − wait|Cmax, requires that ∀j ∈ ..., n − 1, p2,[j] = p1,[j+1]. Figure 1
provides an example of a feasible no-idle, no-wait schedule for a 2-machine flow shop
with four jobs.

P1,[2]P1,[1] P1,[3]
M1

M2

P1,[4]

P2,[1] P2,[3]P2,[2] P2,[4]

Figure 1: A no-idle no-wait schedule for a 2-machine flow shop

The peculiarity of the no − idle, no − wait effect strictly links the above mentioned
flow shop problem to the game of dominoes. Dominoes are 1 x 2 rectangular tiles with
each 1 x 1 square marked with spots indicating a number. A traditional set of dominoes
consists of all 28 unordered pairs of numbers between 0 and 6. We refer here to the
generalization of dominoes presented in [2] in which n tiles are present, each of the tiles
can have any integer (or symbol) on each end and not necessarily all pairs of numbers
are present.

In [2], it is shown that the Single Player Dominoes (SPD) problem, where a single
player tries to lay down all dominoes in a chain with the numbers matching at each
adjacency, is polynomially solvable as it can be seen as the solution of an eulerian path
problem on an undirected multigraph. Figure 2 shows the solution of an SPD problem
with 12 tiles with numbers included between 0 and 6.

Figure 2: Solution of an SPD problem with 12 dominoes

We refer to the oriented version of SPD called OSPD where all dominoes have an
orientation, e.g. if the numbers are a and b, only the orientation a → b is allowed but
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not viceversa. It is easy to show that also problem OSPD is polynomially solvable as it
can be seen as the solution of an eulerian path problem on a directed multigraph.

The following proposition holds.

Proposition 1 F2|no− idle, no−wait|Cmax ∝ OSPD and can be solved in O(n) time.

Problem F2|no−idle, no−wait|Cmax is also linked to a special case of the Hamiltonian
Path problem on a connected digraph. Consider a digraph G(V,A) that has the following
property: ∀vi, vj ∈ V , either Si ∩ Sj = ∅, or Si = Sj where we denote by Si the set
of successors of vertex vi. In other words, each pair of vertices either has no common
successor or has all successors in common. Let indicate the Hamiltonian path problem in
that graph as the Common/Distinct Successors Hamiltonian Directed Path (CDSHDP)
problem.

The following proposition holds.

Proposition 2 CDSHDP ∝ F2|no− idle, no− wait|Cmax. Correspondingly, problem
CDSHDP is polynomially solvable.

The analysis leading to Proposition 1 can be extended also to the m-machine case.
The following proposition holds.

Proposition 3 Problem F |no− idle, no− wait|Cmax is polynomially solvable.

Finally, by reduction from the Numerical Matching with Target Sums (NMTS) prob-
lem, the following proposition holds.

Proposition 4 Problems J2|no− idle, no−wait|Cmax and O2|no− idle, no−wait|Cmax

are NP -Hard in the strong sense.
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Operating Room Scheduling with Variable Procedure Times

Macarena Azar (Speaker) Javiera Barrera Rodrigo A. Carrasco
Susana Mondschein ∗

1 Introduction

The operating theatre is one of the most expensive unit in hospitals, representing up
to 40% of the total expenses [3]. Therefore, since 1960, a vast amount of research has
addressed the management of operating rooms (see [8] and historical references therein).
Two main problems have been the focus [5]: the reduction of overtime costs and, the
under utilization of ORs .

The OR planning problem can be studied at different levels: strategic, tactical, and
operational. We focus on the latter, where the randomness of surgery times have a
significant impact on the efficiency of the system. At the operational level, stochastic
programming models have been proposed to deal with the uncertainty of the surgery
duration. For example, in [7] the schedule provided by the medical centre for one week
is used as a base solution, which is improved using a local search heuristic that aims
to increase the capacity utilization and reduce the risk of overtime. Similarly, in [10],
the authors use an approximation method to add probabilistic capacity constraints, but
requires a large dataset to tune. In [1] a two-stage stochastic MIP is formulated to assign
a patient, a surgeon, and a block time to an operating room. The formulation also allows
to decide the number of operating rooms that should be opened. Although these articles
deal directly with the variability of perioperative times, the distribution only depends on
the diagnosis and not on the physician performing the surgery.

On the other hand, the prediction of the surgical procedure times has been addressed
in many articles (see [4] and reference therein). In [4] the authors mention that the main
two factors, besides the diagnosis, to predict the perioperative times are the primary
surgeon and the type of anesthetic. Similar conclusions are obtained in [11] and [2]. In all
these articles the authors mention that more accurate prediction of the perioperative time
should be used to improve the OR management, but recent surveys do not mention any
work using this information. Even more, in [9] the authors point out that most studies,
which assume certain variability of the surgery time, use the historical data to calibrate
the stochastic models instead of using historical data to reduce the uncertainty. To the
best of our knowledge, the only work that programs ORs using surgeons’ information
to predict surgery duration is [6]. They compare three classic data mining techniques
to estimate the surgery duration, and propose an IP model to schedule surgeries in one
OR during one week, assuming a deterministic perioperative time, that also depends
on the surgeon assigned to the operation. This leaves one important open question: is
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it better to deal with the variability duration with a stochastic model without using
surgeon information, or is it better to invest in that and reduce variability?

Our work has been motivated by the Instituto de Neurociruǵıa Dr Asenjo, in Santiago,
Chile. The medical centre has provided historical data of their four ORs, dedicated
exclusively to elective surgeries. Our data shows that surgeons can have significantly
different surgery times, with differences up to 60% for the same surgery. In this article, we
propose a time-indexed scheduling formulation with distribution related chance constrains
to improve the scheduling of an operating theatre, using the information of each surgeon.
Through simulations and the use of real instances, we report the performances for three
different metrics for all the solutions, showing the importance of using historical data.

2 Problem Formulation using Chance Constraints

The problem setting is as follows. There are J ORs, and we discretize the time the
ORs are open into T time-steps of size ∆t. We have I patients, where each patient
i has a set Ki of physicians that can perform the surgery, an average time of surgery
pik when performed by physician k, and a real (random) time of surgery Sik. Each
physician k ∈ {1, . . . ,K} is available only within time-steps [ak, bk]. The objective is to
program surgeries on all J ORs, assigning patients and physicians in a way such that the
probability that any OR has overtime is controlled.

Let xijkt be 1 if patient i is assigned to have her surgery in OR j, which physician k,
starting at time-step t; and 0 otherwise. To tackle this problem we develop a time-index
formulation using these decision variables and average operation times, such that only
one procedure can be done in each OR at each time; each physician can only perform one
procedure at the time; each patient can be operated by one physician at most; surgeries
are assigned to physicians only in the time-window where each physician is available; and
that surgeries cannot finish after the ORs are closed.

The problem with the previous formulation is that ,even when overtime is not allowed,
because we are using average surgery times, overtime might occur in the actual schedule.
In order to reduce this occurrence, we propose using chance constraints to account
for the probability distribution of the surgery times. In particular, we would like to
control the probability of an overtime occurring. Let Sj denote the real (random) total
surgery times for the day in OR j. We would like to add a constraint of the form
P(Sj ≥ T ) ≤ ε. In the general case, where we do not have enough information of the
distribution of each surgery, we can use Hoeffding’s inequality which is of the form

P(Sj − E [Sj ] ≥ t) ≤ exp
(
− 2t2∑n

i=1(bi−ai)2

)
, where [ai, bi] represents the support of the i-th

random variable with i = 1, . . . , n, such that they sum up to Sj . Hence, the following
constraint for each OR j will guarantee the required condition:

exp

(
− 2 (T − E [Sj ])

2

∑I
i=1

∑K
k=1

∑T
t=1 xijkt(bik − aik)2

)
≤ ε. (1)

Through a series of transformations and adding auxiliary variables, we write (1) as

I∑

i=1

K∑

k=1

T∑

t=1

(
1

2
ln(ε)(bik − aik)2 + p2ik − 2Tpik

)
xijkt + 2

I∑

i=1

I∑

l=i+1

K∑

k=1

pikplkykjil ≥ −T 2,
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plus some additional constraints that link xijkt and ykjil.
In the setting where we applied our methodology, surgeries show a uniform distribution,

in which case we can further improve Hoeffding’s bound with a simpler and faster
formulation. Additionally, we can also deal with lognormal distributions, which are the
ones generally reported in several articles. In that case, we use a Laplace transform to
compute the bounds numerically, and later add constraints to the optimization problem.

Finally, we analyse the practical performance of our method, showing that there is an
important improvement in the performance of the operative schedules once the random
surgery times are considered.
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A Constraint Generation Procedure for Pre-Runtime

Scheduling of Integrated Modular Avionic Systems

Mathias Blikstad ∗ Emil Karlsson † Tomas Lööw ‡

Elina Rönnberg (Speaker) §

1 Background

A modern aircraft hosts lots of advanced electronics in the form of sensors that gather
information, units where the information is processed, actuators that control the aircraft,
and equipment that presents information to the pilot. During operation, this information
is updated repeatedly, giving rise to a complex flow of data between different units and
thus putting requirements on when different activities are allowed to be executed.

Electronics in an aircraft is called avionics. During the last two decades, the majority
of the avionics industry has gone from using federated systems to using an integrated
architecture called Integrated Modular Avionics (IMA) where applications share hard-
ware resources on a common avionic platform. Such an architecture necessitates strict
requirements on the spatial and temporal partitioning of the system to achieve fault con-
tainment, and a common standard for this partitioning is ARINC 653, see [1]. One way
to establish a temporal partitioning is through pre-run time scheduling of the system,
which involves creating a schedule for both tasks and a communication network. The
introductory parts of the PhD-thesis [2] provide an extensive introduction to the area of
scheduling of avionic systems.

In the process of designing an avionic system, new software functionality is developed
and added to the system iteratively during a project of several years. Whenever a change
is made in a software component, the scheduling tool has to provide a new schedule for
the system or, if it fails, preferably produce a proof of infeasibility. If no feasible schedule
exist, either changes of the software or upgrades of the avionics platform are needed.
Due to the rigid certification processes in the aircraft industry it is extremely costly to
upgrade the platform, and therefore it is important to utilise the existing platform in
an efficient way and make upgrades only when necessary. The frequency of use and the
importance of the outcome of the scheduling gives the scheduling tool a vital role in the
process of designing an avionic system.

Most approaches for pre-runtime scheduling of large-scale real-time systems are of
a heuristic nature, see references in [3]. For many types of real-time systems, a primal
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†emil.karlsson@liu.se. Department of Mathematics, Linköping University, SE-581 83 Linköping,
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heuristic might be an efficient and sound way to provide a schedule. This does however
not hold in our setting when the scheduling also involves the challenge to determine
whether a desired software functionality can be implemented with the existing platform
or not. If only a primal heuristic is applied and it fails to provide a solution, one does
not know if this depends on shortcomings of the heuristic or if it is due to the fact that
no feasible solution exists.

Our work contributes in the direction of developing optimisation based approaches
for scheduling of large and complex future avionics systems, and we address the prob-
lem from a Mixed Integer Programming (MIP) point of view. The research is carried
out in collaboration between Linköping University and the Swedish defence and security
company Saab. Even for small sized instances of practical relevance, a straightforward
MIP-model for the full scheduling problem contains a hundred million binary variables,
which makes it computationally intractable. Our solution strategy is a constraint gen-
eration procedure that is tailored to exploit known characteristics of our problem.

2 A sketch of the system design and problem formulation

The system under consideration is distributed and at each node there is a set of modules.
One of these, the Communication module (CM), is responsible for both the inter-node
and the intra-node communication as well as the communication with external systems.
The tasks on these modules are many and execute once per system period. The re-
sponsibility of the other modules, the Application Modules (AMs), is to run applications
(software processes). The tasks on these modules are relatively few and execute 64 times
during a system period. Each task has an interval in which to execute and the system is
partitioned in the sense that all tasks are beforehand assigned to modules. Precedence
dependencies are used to restrict the distance from one task instance to another task
instance, within a system period or between two succeeding periods. Chains are used
to prescribe that task instances shall execute in a specified order within the duration of
one system period.

The nodes communicate over a Communication network (CN) which is a switched
Ethernet that supports multicast. It is designed such that messages are assigned to, and
sent in, discrete time slots in which they are allowed to use the full bandwidth. To send
a message involves a chain of task instances that needs to execute on the CMs involved.
There are two types of scheduling decisions to be made; tasks are sequenced and assigned
a start time while communication is scheduled by assigning messages to time slots.

3 Solution strategy and computational results

For the industrially relevant instances considered, the computational challenge stems
from the large number of tasks to be sequenced. It is also known that a large portion
of the tasks have a fixed start time and that the other requirements, like task intervals
and precedence dependencies, are not particularly tight or difficult to manage from
a computational point of view. This knowledge is exploited in the solution strategy
where a reformulation of the sequencing part of the model is made in a way which gives
a large amount of constraints instead of a large amount of variables. Most of these
constraints are redundant and the problem can therefore be solved without explicitly
including all of them. Instead we apply a constraint generation procedure where we use
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the Gurobi Optimizer Version 6.5.1 both for solving the relaxed problem and for solving
the subproblem that detects constraints to add to the relaxed problem.

For the computational evaluation we have considered three instances, named A, B,
and C. Instance A has two nodes and a total of about 6500 task instances. Instance B
has 5 nodes and a total of about 15 000 task instances and Instance C is the largest with
7 nodes and a total of about 21 000 task instances. For these, the portion of fixed task
instances is 64%, 54%, and 53%, respectively.

As benchmark for the results to be presented, we have tried to solve Instance A
by applying Gurobi to our original formulation of the problem (after applying all our
customised pre-processing components). Within a time limit of one week, no feasible
solution was found. When using our constraint generation procedure, a schedule is
obtained for Instance A within about two minutes and the results are not very sensitive
to the parameter settings of the method. This exceptionally good outcome is likely to
depend on that there exists many feasible solutions for this instance and that none of
the relaxed constraints need to be generated in order for the relaxed problem to produce
a feasible solution.

Instance B and C are significantly more challenging than Instance A. The computa-
tional times reported ranges between 14 minutes and 24 hours for Instance B and between
19 minutes and 12 hours for Instance C, depending on parameter settings of the method.
The range in result is due to the fact that our approach for generating constraints is ex-
pensive, making the method sensitive to the number of constraint generation iterations
needed. We find that these results merely verify that we can solve industrially relevant
instances within reasonable time and our conclusion is that the approach is viable for
this type of problem. Our continued research aims at improving the components used
in this solution strategy to further enhance the computational performance.
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Single Machine Projections

Alexander Tesch ∗

1 Introduction

Given a set of jobs J = {1, . . . , n}, we consider any scheduling problem of the form:

min f(C), C ∈ P

where C ∈ Rn
>0 is a vector of job completion times and f(C) : Rn

>0 7→ R>0 is a mono-
tone cost function with f(C ′) ≤ f(C) for all C ′ ≤ C. The set of feasible job completion
times P can be any subset of Rn

>0. In this article, we aim to construct valid inequalities
for P that are of the form

∑
j∈J ajCj ≥ b. For this, we assume knowledge on the values

Cmax(S) = minC∈P maxj∈S Cj for every subset S ⊆ J . For many scheduling problems,
these values can be computed efficiently, either exactly or approximately. Except for sin-
gle machine [2] and parallel machine scheduling [3], general valid inequalities of the form∑

j∈J ajCj ≥ b are rather unknown for other scheduling problems. The inequalities stud-
ied in this paper can be applied to many different scheduling problems such as unrelated
parallel machines, resource-constrained project scheduling, flow-shop and others includ-
ing (non-)preemption and generalizations to release dates and precedence constraints.
For some scheduling problems we are able to state the first non-trivial inequalities of
this kind. Our general idea is based on a generalization of the classical single machine
characterization of Queyranne [2]. In particular, we show that any scheduling problem
of the above form can be interpreted as many individual single machine problems whose
associated inequalities are valid for the original problem P .

2 Single Machine Projections

Assume the values Cmax(S) = minC∈P maxj∈S Cj for all S ⊆ J with S 6= ∅ which can
be interpreted as optimal makespan values, if only jobs in the subset S are considered.
Notably, the computation of Cmax(S) can already be NP-hard for many scheduling
problems. However, there exists a couple of examples where Cmax(S) can be computed
efficiently, especially compared to other cost functions, see for example P |pmtn|Cmax

and P |pmtn|∑wjCj , or 1|rj , pmtn|Cmax and 1|rj , pmtn|
∑
wjCj . From the viewpoint

of complexity theory, it suggests that Cmax(S) is an easier problem in general.
In the following write x(S) =

∑
i∈S xi for some vector x ∈ Rn. We call a vector

π ∈ Rn
≥0 of job processing times admissible, if π(S) ≤ Cmax(S) holds for every job

subset S ⊆ J . Thus, the set of all admissible processing times is given by

PA = {π ∈ Rn
≥0 : π(S) ≤ Cmax(S) ∀S ⊆ J , S 6= ∅} (1)
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which defines an n-dimensional polytope, since 0 /∈ P and therefore Cmax(S) > 0 for all
S ⊆ J with S 6= ∅. The polytope PA is down-monotone, that means for every vector
0 ≤ π′ ≤ π with π ∈ PA we also have that π′ ∈ PA. In the presence of release dates,
it is possible to modify PA to exploit supermodularity as given in [1, 3]. Similar to the
single machine inequalities of Queyranne [2], define the function

g(π) =
1

2


∑

j∈J
πj




2

+
1

2

∑

j∈J
π2j (2)

which, in contrast to the original inequalities, takes a vector as argument instead of a
subset S ⊆ J . Our results are mainly built on the following theorem.

Theorem 1 For every π ∈ PA the inequality
∑

j∈J πjCj ≥ g(π) is valid for P .

In particular, every π ∈ PA induces one separate single machine instance for which the
single machine inequality

∑
j∈J πjCj ≥ g(π) holds. Theorem 1 says that the inequality

is not only valid for this single machine problem but also for our original problem, that
is P . Hence, we translate a certain part of our problem into one single machine problem,
generate the corresponding inequality and transfer it back to our original problem. In
contrast to the original single machine inequalities, the inequality

∑
j∈J πjCj ≥ g(π)

does not need to be stated for every subset S ⊆ J because, by the down-monotonicity
of PA, we may set πj = 0 for every j ∈ J \ S, which yields the desired inequality∑

j∈S πjCj ≥ 1
2π(S)2 + 1

2π
2(S) = g(π). Therefore, any subset inequality is covered by a

separate admissible processing time vector π ∈ PA.
For a more visual interpretation in a Gantt-chart setting, the vectors π ∈ PA can be

seen as follows. For any feasible completion time vector C ∈ P consider any projection
onto the one-dimensional time line, that means every time point gets assigned exactly
one job that is processed at this time or a dummy job if no job is processed. Any
such projection defines a single machine instance with projected processing time vector
π̃ ∈ Rn

≥0. Then it holds π ≤ π̃ for all π ∈ PA, meaning that every admissible processing
time vector yields a single machine lower bound for every single machine projection.
This justifies the term of π ∈ PA being a valid single machine projection. In particular,
define the set of completion times that are valid for all π ∈ PA by

PC = {C ∈ Rn
≥0 :

∑

j∈J
πjCj ≥ g(π) ∀π ∈ PA}. (3)

From Theorem 1 it follows that PC is a relaxation of P , that is P ⊆ PC . The other
inclusion does not hold in general. Since g(π) = πTBπ where B ∈ Rn×n is a positive
semidefinite matrix, one can show that PC is indeed a polyhedron and the vertices
π ∈ V (PA) of the polytope PA are sufficient to describe PC .

3 Separation

Given a completion time vector C ∈ Rn
>0, the separation problem of PC is to compute

a vector π ∈ PA such that Γ(π) = g(π) −∑j∈J πjCj > 0. Since g(π) is convex, this
problem corresponds to a convex maximization problem over a polytope, which is known
to be NP-hard in general. However, for the special case of Γ(π) we are able to state
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necessary optimality conditions. From that, we derive a discrete optimization problem
that computes a separating inequality for PC . In order to do this efficiently, one also
requires to perform separation for PA efficiently. But since PA depends on the Cmax(S)
values, the separation of PA is also NP-hard in general. Therefore, let P̃C be defined as
in (3) but according to the set P̃A ⊆ Rn

≥0. We verify that for every P̃A ⊆ PA it holds

PC ⊆ P̃C which means that P̃C is also a valid relaxation for P ⊆ PC . Therefore, one
approach is to consider lower bound values L(S) ≤ Cmax(S) for every S ⊆ J in order to
obtain the relaxation P̃A = {π ∈ Rn

≥0 : π(S) ≤ L(S) ∀S ⊆ J , S 6= ∅} ⊆ PA. Preferably,

the values L(S) are chosen such that P̃A can be separated in polynomial time, for example
by a simpler polytope. Depending on the original problem P , this is often given by
linear programming relaxations for Cmax(S) that function as value oracles to separate
P̃A. Another approach is to focus on discrete relaxations P ∗A = {π1, . . . , πm} ⊆ PA.
If P ∗A = V (PA) this yields an exact separation method for PC but since one cannot
expect to compute V (PA) efficiently, another possibility is vertex enumeration of the
relaxation P̃A, that is P ∗A = V (P̃A). For the special case of f(C) =

∑
j∈J wjCj , we

propose a reduction to a set of non-dominated points π of P̃A because all induced points
πS with S ⊆ J and πS,j = πj for all j ∈ S and πS,j = 0 for all j ∈ J \ S can be
considered implicitly because the associated inequalities define a linear program with
coupling constraints and m polymatroidal blocks. This can be solved, for example, by
Dantzig-Wolfe Decomposition and the greedy algorithm as subroutine.

4 Application to Scheduling Problems

The proposed methods can be applied generically to a broad range of scheduling prob-
lems because they solely depend on the values Cmax(S) that can be computed, or ap-
proximated respectively, more or less efficiently for each individual scheduling prob-
lem. We show that certain dual LP-relaxations for unrelated parallel machines and the
resource-constrained project scheduling problem with makespan objective yield suitable
relaxations P̃A ⊆ PA for their respective completion time polyhedra. Moreover, the as-
sociated inequalities subsume some previously proposed parallel machine inequalities [3].
A further interesting application is single machine scheduling with sequence dependent
setup times which is known to be equivalent to the famous traveling salesman prob-
lem. There we obtain new valid inequalities in the arrival time variables by using dual
information from a linear programming relaxation of this problem.
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Minimizing Maximum Flow Time on Related Machines via

Immediate Dispatch and Dynamic Pricing

Sungjin Im∗ Benjamin Moseley† Kirk Pruhs‡ Clifford Stein (Speaker) §

1 Introduction

In this paper we give an online algorithm for minimizing the maximum flow time on
related machines using dynamic posted prices. In doing so, we prove two main results.
First, we give an immediate dispatch algorithm for minimizing maximum flow time on
related machines that has a better competetive ratio than previous best result for this
problem [BC15]. Then, we show a general result about when dynamic posted prices can
be used in an on-line scheduling algorithm. Applying both results to the problem of
minimizing maximum flow time on related machines yields the final result.

In the well-known related machines environment, we are given a set of m machines
with speeds, s1, . . . , sm. We assume, without loss of generality that s1 < s2 < . . . sm.
We are also given a set of n jobs with release dates rj and processing times pj . A
non-preemptive schedule chooses a machine i on which to run each job j, the job is
processed for pj/si time units and ultimately has some completion time Cj . The flow
time of the job is Fj = Cj − rj , and the objective is to minimize the maximum flow time
Fmax = maxj Fj . Maximum flow time is a generalization of makespan, and if all jobs
have identical release dates then it just reduces to makespan. Maximum flow time is
also releated to deadline scheduling problems, as a maximum flow time of T means that
each job completes by time rj +T , so one is putting a bound on the amount of time that
any job spends in the system.

Until recently, there was no O(1)-competetive algorithm for minimizing maximum
flow time on related machines. Using resource augmentation, Anand et. al. [ABF+13]
gave a (1 + ε)-speed O(1/ε) algorithm for the more general problem of scheduling to
minimize maximum flow time on unrelated machines. (Related machines are a special
case of unrelated machines in which pij the processing time of job j on machine i is pij =
pj/si). They also showed that, for unrelated machines, any algorithm without resource
augmentation is Ω(m)-competetive. For the weighted maximum flow time objective,
they also gave a (1 + ε)-speed O(1/ε3) competetive algorithm for related machines and
showed that no O(1)-speed, O(1)-competetive algorithm exists in the unrelated setting.
Finally, Bansal and Cloostermans[BC15] recently gave a 13.5-competetive algorithm for
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related machines. This result is also the first O(1)-approximation even for the offline
version of minimizing maximum flow time on related machines.

An Immediate Dispatch Algorithm An online algorithm is called immediate dis-
patch if, when a job j arrives at time rj , we immediately decide which machine j will
run on. We do not need to start job j at time rj , but we must make an irrevocable
decision about which machine it will eventually run on. Immediate dispatch algorithms
have some practical advantages. For example, we do not need to maintain a global
queue of unprocessed work, as we immediately send a job to a machine; the machines
can then operate independently in their scheduling decisions. The algorithm of Bansal
and Cloostermans is not immediate dispatch, and they mention in their paper that it is
not clear that such an algorithm exists.

In this work, we give an immediate dispatch algortihm for miminimizing maximum
flow time on related machines. Moreover, our immediate dispatch algorithm has a better
competetive ratio, as we prove the following theorem:

Theorem 1 There is an immediate dispatch algorithm for minimizing maximum flow
time on related machines with a competetive ratio of 25/3.

We briefly describe the algorithm and omit the analysis. Assume that the algorithm
knows Opt, the value of the optimum flow time. If not, we can use a standard doubling
trick. For a constant ε, we define epochs to be of length εOpt and we divide time into a
series of epochs. We also will have constants α and β to be chosen later. At the start of
an epoch we assign jobs that arrived in the last epoch, and assign them in non-increasing
order of processing time. Let j be a job that is to be assigned. Let [ij ,m] be the (indices
of the) set of machines on which pj/si is at most Opt. (Observe that because we have
sorted machines by speed, and because we assume we know Opt, the set of machines
must form an interval and must be non-empty.) If there is a machine in [ij ,m] with load
less than αOpt, then schedule j on the slowest such machine. Otherwise, if there is a
machine in [ij ,m] with load less than βOpt then schedule j on the slowest such machine.
Otherwise the algorithm has a proof that the current value of Opt is too small. We then
choose α and β appropriately, and are able to obtain the bound in the theorem.

Posted Pricing Schemes There has been a great deal of work on mechanism design
for scheduling. One natural class of simple mechanisms are posted pricing schemes. (see
e.g. [CEFJ15, FGL15].) In a dynamic posted pricing scheme for an online scheduling
problem, before the jth job arrives, a vector gj = (g1j , . . . , g

m
j ) is published, where gij

is the price that the jth job must pay to run on the machine i. If Lij is load on the
ith machine when the jth job arrives and, pij is the processing time of the jth job on
machine i, then job j is assigned to the machine that minimizes Lij + pij + cij , that is,
the job selfishly assigns itself to the machine that minimizes its flow time plus cost. It
is important that the prices for the jth job only depend on the first j − 1 jobs and the
scheduling decision made up to that point; they do not depend on any characteristics of
the jth job or any knowledge (even distributional) about any future jobs.

We now define a monotone algorithm. Let At(p) the speed of the machine that an
algorithm A would assign a job of size p to if it was released at the current time t. Then
an algorithm is monotone if for all possible instances, and for all possible t, At(p) is
monotone nondecreasing in p.
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We show a connection between immediate dispatch, monotone algorithms and dy-
namic pricing algorithms.

Lemma 2 An immediate dispatch, monotone algorithm A for a scheduling problem can
be converted into a dynamic posted pricing algorithm.

This lemma shows a general connection that goes beyond the particular problem
that is the subject of this paper.

Combining these results, we obtain a dynamic pricing, O(1)-competetive algorithm
for maximum flow on related machines.
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Better Unrelated Machine Scheduling for Weighted

Completion Time via Random Offsets from Non-Uniform

Distributions

Sungjin Im (Speaker) ∗ Shi Li †

1 Introduction

Minimizing total (weighted) completion time is one of the most popular scheduling ob-
jectives that have been extensively studied. The scheduler must assign each job j to a
machine i and complete it. We consider two settings, preemptive and non-preemptive
schedules. In the non-preemptive setting, each job must be completed without interrup-
tion once it starts getting processed. On the other hand, in the preemptive setting, each
job’s processing can be interrupted to process other jobs and be resumed later. In both
cases, job j’s completion time is, if j is assigned to machine i, defined as the first time
when the job gets processed for pi,j units of time. Then, the objective is to minimize∑

j∈J wjCj . These two non-preemptive and preemptive versions can be described as
R|rj |

∑
j wjCj and R|rj , pmtn|

∑
j wjCj respectively, using the popular three-field nota-

tion in scheduling literature. Both versions of the problem are strongly NP-hard even
in the single machine setting [5], and are APX-hard even when all jobs are available for
schedule at time 0 [4], in which case preemption does not help.

For the non-preemptive case, Skutella gave a 2-approximation based on a novel con-
vex programming [9], which improved upon the (2 + ε)-approximation based on linear
programming [6]. It has been an outstanding open problem if there exists a better than
2-approximation [9, 7, 6, 10]. In particular, it is listed in [7] as one of the top 10 opens
problems in the field of approximate scheduling algorithms; see the Open Problem 8.
When jobs have no arrival times, i.e. ri,j = 0 for all i, j, very recently Bansal et al. [2]
gave a better than 1.5-approximation in a breakthrough result, improving upon the pre-
vious best 1.5-approximations due to Skutella [9] and Sethuraman and Squillante [8]. In
fact, the Open Problem 8 consists of two parts depending on whether jobs have release
times or not. Bansal et al. [2] solved the first part of Open Problem 8, and the second
part still remained open.

1.1 Our Results

In this paper, we answer the second part of the open problem in the affirmative by giving
a better than 2-approximation.
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Theorem 1 For a constant α < 1.8786, there exists an α-approximation for
R|rj |

∑
j wjCj.

Surprisingly, we give this result by rounding a very simple and natural LP that has
not been studied in previous works. Our LP can be viewed as a stronger version of the
time-indexed LP in [6], by taking the non-preemption requirement into consideration.
However, even with this stronger LP, the rounding algorithm in [6] does not yield a
better than 2-approximation, and we believe this is why the previous works overlooked
this simple LP. Improving the 2-approximation ratio requires not only the stronger LP,
but also novel rounding algorithm and analysis.

Our result also gives a positive answer to the conjecture made by Sviridenko and
Wiese [10]. They considered a configuration LP where there is a variable for every
machine i ∈ M and subset of jobs S ⊆ J . The variable is associated with the optimal
total weighted completion time of the jobs in S on machine i. They showed that one can
solve their LP within a factor of 1+ ε, but could not give a better than 2-approximation,
conjecturing that their LP have an integrality gap strictly less than 2.

Indeed, one can show that the configuration LP of [10] is the strongest among all con-
vex programmings of the following form: minimize

∑
i∈M fi(xi) subject to

∑
i∈M xi,j = 1

for every j ∈ J and xi,j ≥ 0 for every i ∈M, j ∈ J , where xi = (xi,j)j∈J ∈ [0, 1]J and fi
is some convex function over [0, 1]J such that if xi ∈ {0, 1}J , then fi(xi) is at most the
total weighted completion time of scheduling jobs {j : xi,j = 1} optimally on machine i.
All results mentioned in this paper (including our results) are based on programmings of
this form and thus the configuration LP is the strongest among them. Hence, our result
gives a 1.8786 upper bound on the integrality gap of the configuration LP.

With a solution to the configuration LP, one can derive a natural independent round-
ing algorithm. For each job j, independently assign j to a machine i with probability
xi,j . Then for every machine i, we schedule all jobs assigned to i; this can be done
optimally if all release times are 0, and nearly optimally (within (1 + ε) factor) in gen-
eral [1, 3]. When all jobs have release time 0, the algorithm gives a 1.5-approximation.
However, [2] showed this independent rounding algorithm can not give a better than
1.5-approximation, which motivated them to develop a clever dependent rounding algo-
rithm.

For R|rj |
∑

j wjCj , the independent rounding algorithm is known to give a 2-
approximation [6, 9]. In contrast to the status for R||∑j wjCj , no matching lower
bound was known for this algorithm. Our result indirectly shows that the independent
rounding can achieve 1.8786-approximation. Thus we do not need to apply the sophis-
ticated dependence rounding scheme of [2], which only led to a tiny improvement on
the approximation ratio for R||∑j wjCj . We complement our positive result by showing
that the independent rounding algorithm can not give an approximation ratio better
than e/(e− 1) ≈ 1.581.

Theorem 2 There is an instance for which the independent rounding gives an approx-
imation ratio worse than e/(e− 1)− ε ≥ 1.581− ε for any ε > 0.

We continue to study the preemptive case. In the preemptive case, two variants were
considered in the literature depending on whether jobs can migrate across machines or
must be completed scheduled on one of the machines. If migration is not allowed, the
work in [6] still gives a (2 + ε)-approximation since the LP therein is a relaxation for
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preemptive schedules but the rounding outputs a non-preemptive schedule. If migration
is allowed, [9] gives a 3-approximation. Our main result for the preemptive case is the
first better than 2-approximation when migration is not allowed.

Theorem 3 For a constant α < 1.99971, there exists an α-approximation for
R|rj , pmtn|

∑
j wjCj.

We note that our algorithm is based on a stronger linear programming relaxation.
The configuration LP of [10] is for non-preemptive schedules hence not usable for preemp-
tive schedules. Our LP is a different type of configuration LP where there are variables
for each job’s complete schedules. While we use an LP for preemptive schedules, we
output a non-preemptive schedule.
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Online Min-Sum Flow Scheduling with Rejections

Giorgio Lucarelli (Speaker) ∗ Nguyen Kim Thang † Abhinav Srivastav ‡

Denis Trystram ∗

1 Introduction

A well-identified issue in online computation is the weakness of the worst case paradigm
which underestimates the performance of an online algorithm. Many algorithms, which
perform well in real-world, are known to admit a mediocre theoretical guarantee. Con-
versely, many theoretical sound algorithms behave poorly even in simple practical set-
tings. The need of more accurate models is considered as a high importance in algorith-
mic community. We are interested in resource augmentation models in the context of
scheduling. Kalyanasundaram and Pruhs [5] proposed the speed augmentation model,
where an online algorithm is compared against an adversary with slower processing
speed, while Phillips et al. [7] proposed the machine augmentation model in which the
algorithm uses more machines than the adversary. Choudhury et al. [3] introduced the
rejection model where an online algorithm is allowed to discard a small fraction of jobs.

In this paper, we study the problems of preemptive and non-preemptive online
scheduling of jobs on unrelated machines in order to minimize the average time a job
remains in the system. Both problems are known to be non-approximable by a constant
factor [4]. The preemptive variant has been extensively studied under the different re-
source augmentation models [1, 2]. The non-preemptive variant is much less explored.
An O(1ε )-competitive algorithm has been presented in [6] if both an ε-speed augmenta-
tion is used and an ε-fraction of jobs is rejected. We are interested here in exploring
the power of the rejection model and in eliminating the need for speed augmentation in
the latter result. On the road to this, we show how to replace speed augmentation with
rejection in the preemptive variant. Our analysis is based on the dual-fitting paradigm.

Problem definition. We are given a setM of m unrelated machines where jobs arrive
online, that is we learn about the existence and the characteristics of a job only after
its release. Let J denote the set of all jobs of our instance, which is not known a priori.
Each job j ∈ J is characterized by its release time rj , while if j is executed on machine
i ∈ M then it has a processing time pij . Moreover, each job has to be dispatched to
one machine at its arrival and migration is not allowed. Given a schedule, let Cj denote
the completion time of the job j. The flow-time of j is defined as Fj = Cj − rj , that is
the total time that j remains in the system. Our objective is to create a schedule that
minimizes the total flow-times of all jobs, i.e.,

∑
j∈J Fj .
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2 Linear Programming Formulation

For each machine i ∈ M, job j ∈ J and time t ≥ rj , we introduce a binary variable
xij(t) which indicates if j is processed on i at time t. We consider the following linear
programming relaxation and the corresponding dual program.

min
∑

i∈M

∑

j∈J

∫ ∞

rj

1

pij
(t− rj + pij)xij(t)dt

∑

i∈M

∫ ∞

rj

xij(t)

pij
dt ≥ 1 ∀j ∈ J

∑

j∈J
xij(t) ≤ 1 ∀i ∈M, t

xij(t) ∈ [0, 1]

max
∑

j∈J
λj −

∑

i∈M

∫ ∞

0

γi(t)dt

λj

pij
− γi(t) ≤ (t− rj + pij) ∀i ∈M, j ∈ J , t ≥ rj

λj , γi(t) ≥ 0

We will interpret the rejection model in the above primal and dual programs as fol-
lows. We assume that the algorithm is allowed to reject a setR of jobs. This corresponds
to sum up in the primal objective only on the set of the non-rejected jobs.

3 Preemptive Scheduling

The algorithm. Each job is immediately dispatched to a machine upon its arrival.
We denote by Qi(t) the set of pending jobs at time t dispatched to machine i, i.e., the
set of jobs dispatched to i that have been released but not yet completed or rejected at
t. Let qij(t) be the remaining processing time at time t of a job j that is dispatched
to machine i. For each machine i, our scheduling policy is the following: at each time
t we execute on i the job j ∈ Qi(t) with the smallest remaining processing time in
Qi(t). In case of ties, we select the job that arrived the earliest. Moreover, we maintain
a counter ci (initialized to 0) for each machine i. Every time a job is dispatched to
i, ci is increased by 1. Then, the rejection policy is the following: given an arbitrary
small constant ε ∈ (0, 1), whenever ci reaches 1/ε+ 1, we reject the job with the largest
remaining processing time from Qi(t) and reset ci to 0. Note that the rejected job does
not immediately disappear from the system. We say that a job ` is definitively rejected at
time t+

∑
j∈Qi(t)

qij(t)+qi`(t), that is at the time that it supposed to be completed. We
denote by Ri(t) the set of jobs dispatched to i that are rejected but not yet definitively
at time t. Let ∆ij be the increase in the total flow-time occurred in the schedule of our
algorithm following the above scheduling and rejection policies if we decide to dispatch
a new job j to machine i. Then, the dispatching policy is the following: we dispatch j
to the machine where ∆ij is minimum.

Dual variables. Based on the dispatching policy, we set λj = mini ∆ij . Let Wi(t)
be the total number of jobs dispatched to machine i that are either pending or not yet
definitively rejected until t, i.e., Wi(t) = |Qi(t)|+ |Ri(t)|. We set γi(t) = Wi(t)/(1 + ε).
Based on this definition, we can guarantee that, given any fixed time t, γi(t) does not
decrease due to rejections since the jobs remain in Ri(t) for sufficient time after their
rejection. Then, the following theorem holds.

Theorem 1 Given any ε ∈ (0, 1), there is an O(1ε )-competitive algorithm that rejects at
most an ε-fraction of jobs.
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4 Non-preemptive Scheduling

The algorithm. We enhance the previous algorithm in order to adapt it to a non-
preemptive environment where a job is considered to be successfully executed only if its
execution is performed without any interruption. The scheduling policy for each machine
i is the following: at each time t when i is idle, we start executing on i the job that
has the smallest processing time in Qi(t); in case of ties, we select the job that arrived
the earliest. We use two rejection rules. The first rejection policy is identical with the
preemptive case. For the second rejection rule, we maintain another counter vj for each
job j which is initialized to 0 when the execution of j begins and it is increased by one
each time a new job is dispatched to machine i while j is executing. The second rejection
policy is the following: we reject the job j when vj = 1/ε. The dispatching policy is based
again on the increase in the total flow-time in the same vein as for the preemptive case.

Dual variables. We set λj = ε ·mini ∆ij . Let Qi(t) be the set of pending jobs a time
t dispatched to i. We define the set Ri(t) of jobs that have been rejected due to the
first rejection policy but not yet definitively. For each job j, let Dj be the set of jobs
that are rejected due to the second rejection policy after rj and before its completion or
rejection. Let jk denote the job released when the job k is rejected due to the second
rejection policy. A job j dispatched to machine i is definitively finished

∑
k∈Dj

qik(rjk)

time after its completion or rejection. Let Ui(t) be the set of jobs that are dispatched to
machine i and are already completed or rejected due to the second rejection policy but
not yet definitively finished at time t. We set γi(t) = ε

1+ε(|Qi(t)|+ |Ri(t)|+ |Ui(t)|).

Theorem 2 Given any ε ∈ (0, 1), there is an O( 1
ε2

)-competitive algorithm that rejects
at most a 2ε-fraction of jobs.
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Integration of Vehicle Maintenance Scheduling and Single

Dead-End Track Parking on a Multi-Week Planning Horizon

Murat Elhüseyni (Speaker) ∗ Ali Tamer Ünal †

1 Introduction

We handle the problem of vehicle maintenance scheduling under service level agreement
(SLA) and single dead-end track on a multi-week planning horizon. We show that even
only the hangar parking scheduling at the track is NP-Hard in the strong sense.

We build a MILP model to solve the problem. Thereafter, we derive some optimality
conditions for scheduling of vehicle in the track. We create a discrete-event simulation
environment to test the model. In this environment, we determine critical jobs, namely
maintenance job list at each week. We employ the MILP model to schedule the jobs in
the list. The list is updated with respect to the schedule and carried to next week.

In the literature, there are studies on vehicle maintenance scheduling problems in air-
way ([4], [2], [5]) and bus operations [1]. Our model introduces a maintenance scheduling
problem where there are dead-end tracks in the hangar.

2 Formulation

In the formulation we define the concept of a block which models the movement restric-
tion of a set of vehicles due to the dead-end track. Constraints 2 - 16 account for block
assignment of jobs and their start and finish times at the parking schedule. Constraints
17 - 19 deal with tardiness of critical jobs and earliness of preventive jobs. Continu-
ous time variables are linked to discrete time variables via 20 and 21. 22 - 26 model
maintenance begin time, active maintenance times and end time. 27 is a soft constraint
for SLA demand satisfaction. 28 and 29 render preventive and corrective jobs as out of
service if their upkeep operation has not begun till a given threshold.
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min
∑

j∈PM

(
Tj + Ej + penymax+ 4 Y max+

j

)
+ pencor+

∑
j∈U

Tj+ (1)
∑

t∈T
pen− 4 SLA−t

s.t.
∑

b∈B
xbj + npj = 1 j ∈ CR (2)

∑
j∈CR

xbj ≤ 1 b ∈ B (3)
∑

j∈CR
xbjpj ≤ Pb b ∈ B (4)

∑
b∈Bi

yab ≤ 1 a ∈ Bi+1, i<|C|
(5)

yab ≤
∑

j∈CR
xbj b ∈ Bi, a ∈ Bi+1, i<|C|

(6)

yab ≤
∑

j∈CR
xaj b ∈ Bi, a ∈ Bi+1, i<|C|

(7)

xaj ≤
∑

b∈Bi

yab j ∈ CR, a ∈ Bi+1, i<|C|
(8)

Fb ≥ Sb + Pb b ∈ B (9)

Sb ≥
∑

j∈CR
xbjY

min
j b ∈ B (10)

Fa ≤ Fb + M(1− yab) b ∈ Bi, a ∈ Bi+1, i<|C|
(11)

Sb ≤ Sa + M(1− yab) b ∈ Bi, a ∈ Bi+1, i<|C|
(12)

Sb+1 ≥ Fb b ∈ Bi, i ∈ C
(13)

Sj ≥ Y min
j (1− npj) j ∈ CR (14)

Sj =
∑

b∈B
Bbj j ∈ CR (15)

Cj =
∑

b∈B
Lbj j ∈ CR (16)

Tj ≥ Sj + |T | − dj − |T |(1− npj) j ∈ CR (17)

Tj −4Y max+
j ≤ Y max

j − dj j ∈ PM (18)

Ej ≥ dj − Sj − |T |npj j ∈ PM (19)
∑

t∈T
tejt = Cj j ∈ CR (20)

∑
t∈T

tbjt = Sj j ∈ CR (21)
∑

t∈T
ajt = Cj − Sj j ∈ CR (22)
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∑
t∈T

bjt + npj = 1 j ∈ CR (23)
∑

t∈T
ejt + npj = 1 j ∈ CR (24)

ajt ≤ 1−
∑t

l=1
ejl j ∈ CR, t ∈ T (25)

ajt ≤
∑t

l=1
bjl j ∈ CR, t ∈ T (26)

∑
j∈CR

1− (ajt + ojt) +4SLA−t ≥ SLAt − |NC| t ∈ T (27)

ojt = 1−
∑t

i=rmin
j

bji j ∈ PM, t ≥ rmax
j (28)

ojt = 1−
∑t

i=rmin
j

bji j ∈ U, t ≥ rmin
j (29)

xbj , yab, ajt, ejt, bjt, npj , ojt = {0, 1} a, b ∈ B, j ∈ CR, t ∈ T (30)

Pb, Sb, Fb, Bbj , Lbj , Tj , Cj , Sj ≥ 0 b ∈ B, j ∈ CR (31)

3 Results

We introduce a number of valid inequalities to strengthen the formulation. We also
propose a heuristic to generate an initial feasible solution for the MIP solver. We report
results of our numerical experiments that measure for performance of our model under
various shop conditions and solution parameters.

References

[1] Ali Haghani and Yousef Shafahi (2002). Bus maintenance systems and mainte-
nance scheduling: Model formulations and solutions. Transportation Research Part
A: Policy and Practice, 36:453–482

[2] Andreas Gavranis and George Kozanidis (2015). An Exact Solution Algo-
rithm for Maximizing the Fleet Availability of an Aircraft Unit Subject to Flight and
Maintenance Requirements. European Journal of Operational Research, 242:631–
643

[3] G. Keysan, G.L. Nemhauser and M. W. P. Savelsbergh (2010). Tactical
and Operational Planning of Scheduled Maintenance for Per-Seat, On-Demand Air
Transportation. Transportation Science, 44:291–306

[4] Philip Cho (2011). Optimal Scheduling of Fighter Aircraft Maintenance. Mas-
sachussets Institute of Technology, Msc thesis

[5] N. Safaei, D. Banjevic and A. K. S. Jardine (2011). Workforce-constrained
maintenance scheduling for military aircraft fleet: a case study. Annals of Opera-
tions Research, 186:291–306

43



Three Models and a Set of Dominance Rules for the Speed

Meeting Problem

Benoit Cantais (Speaker) ∗ Antoine Jouglet ∗ David Savourey ∗

1 Introduction

In a speed meeting problem, people are gathered in a place where tables are disposed
to meet eachother. The set of persons that each person wishes to meet is known. At
regular intervals, the persons are asked to get up and are redistributed among the tables.
A distribution of persons among the tables is called a round.

We consider the problem with M tables of C seats, T meeting rounds and a set a
persons X = {1, . . . , N}. G = (X,U ⊆ X2) is an oriented graph such as (i, j) ∈ U means
that person i wishes to meet person j. A meeting (i, j) ∈ U is considered as realized if
persons i and j are seated at the same table during at least one meeting round. At round
t ∈ {1, . . . , T}, each person i can be seated at only one table and at most C persons
can be seated at table m ∈ {1, . . . ,M}. Given the number of rounds T , the goal is to
distribute the persons around the tables at every round to maximise the total number
of wished meetings realized.

As far as we know, this problem has not been treated yet. However, some particular
cases of this problem are close to well known problems of the literature. In the speed
dating problem [2], the special case where the capacity of the tables is 2 is considered. In
the fully social golfer problem [1], every person has to meet every other person exactly
once.

In this talk, we present three models for the speed meeting problem that can be used
in a branch and bound algorithm and a set of dominance rules.

2 Three models for the speed meeting problem to use in a
branch and bound algorithm

Three models used in depth first branch and bound algorithms are presented to find an
optimal solution to the speed meeting problem. In the person model, at every branch of
the search tree, a person i is assigned with a table m at a round t. In the couple model,
at every branch of the search tree, a wished meeting between two persons (i, j) ∈ U
is assigned with a table m at a round t. Consequently, i and j are added to table m
and others wished meetings between i, j and the persons already seating at the table
are done. In both cases, a partial distribution of the persons among the tables for each
round is associated to a node of the search tree (see example Figure 1).

∗{benoit.cantais,antoine.jouglet,david.savourey}@hds.utc.fr. Sorbonne Universités, Univer-
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Round 1
1 2

??
4 ?

??

Round 2
2 ?

??
5 6

??

Table
? Free seat

Figure 1: A partial solution P table for the couple or person model.

In the round model, at every branch of the search tree, a round number t is assigned
with a wished meeting (i, j). The table number where the meeting takes place is not
specified.

Let Ground
t = (X,U round

t ) a graph such as (i, j) ∈ U round
t ⇐⇒ (i, j) is associated

with t. Two connected vertices i and j mean that persons i and j are seated at the same
table during round t. For each round t, X can be partitionned into {Xt,1, . . . , Xt,k},
the k connected components in Ground

t . |Xt,i| = 1 means that the unique person of the
singleton is not seated during round t. |Xt,i| > 1 means that the persons described in
the subset are seated at the same table during round t (see example Figure 2).

Round Meetings assigned Partition

1 (2, 4), (2, 7), (3, 5), (6, 8) {{1}, {2, 4, 7}, {3, 5}, {6, 8}}
2 (1, 3), (2, 6), (4, 7), (5, 7), (5, 8) {{1, 3}, {2, 6}, {4, 5, 7, 8}}

Figure 2: A partial solution P round and the associated partitions for the round model.

The distribution of the persons between M tables of C seats for each round t can be
transformed into a 1D-BinPacking problem with M boxes of capacity C and a set of
k objects such as the size of object i, i ∈ {1, . . . , k} is |Xt,i|. The sub-problem associated
with every round must be solved to check if a partial solution for the round model is
feasible (see example Figure 3).

2 4 7

3 5 6 8

2 4
7?

3 5
68

Figure 3: The BinPacking solution associated with round 1 of P round.

3 A set of dominance rules for the speed meeting problem

A unique identifier number i ∈ {1, . . . , X} is used to identify each person. The first set
of rules introduces an order based on the identifier numbers associated with the persons
between tables and between rounds.

Theorem 1 Let Tm,t(P ) be the smallest identifier number associated with a person who
is seated at table m, round t in P . ∀t ∈ {1, . . . , T},∀(i, j) ∈ {1, . . . ,M}2 such as i < j,
there is an optimal solution P opt with Ti,t(P

opt) < Tj,t(P
opt).

Theorem 2 Let Rt,m,i(P ) be the ie smallest identifier number associated with a person
who is seated at table m, round t in P . ∀t ∈ {1, . . . , T −1},∀i ∈ {2, . . . ,min(ct,1, ct+1,1)}
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there is an optimal solution P opt with Rt,1,i(P
opt) > Rt+1,1,i(P

opt) => Rt,1,i−1(P opt) <
Rt+1,1,i−1(P opt).

Figure 4 gives an example of a partial solution P1 that dominates P2 and P3 according
to these dominance rules.

Round 1

Round 2

1 2
36

4 5
78

1 3
57

2 4
68

P1

4 5
78

1 2
36

1 3
57

2 4
68

P3

1 3
57

2 4
68

1 2
36

4 5
78

P4

Figure 4: P1 dominates P2 and P3.

Theorem 3 Let Mm,t(P ) be the smallest number of meetings involving a person who
is seated at table m, round t in P . There is an optimal solution P opt such as ∀m ∈
{1, . . . ,M},∀t ∈ {1, . . . , T},Mm,t(P

opt) > 0.

There is an interest to seat a person at a table only if this person wishes to meet
someone seating at the table or someone seating at the table wishes to meet this person.

Theorem 4 Let P1 be a partial solution with t a finished round. Let (i, j) be a wished
meeting feasible during round t in P1. If (i, j) is not realized in P1 or (i, j) is realized
at round t′ > t then there is a solution P2 at least as good as P1 such as (i, j) is realized
during round t.

A round is considered as finished if no more assignment will be done. In Figure 5,
the first round is considered as finished in P1 but meetings (2, 9) (realized later) and
(1, 4) (not realized) could have been realized during this round.

P1 : Round 1 finished
P2 : (2, 8) realized earlier
P3 : (1, 4) realized

Round 1

Round 2

1 2
6

3 5

1 3
7

2 8

P1

1 2
68

3 5

1 3
7
P2

1 2
64

3 5

1 3
7

2 8

P3

Figure 5: {(1, 4), (2, 8)} ⊆ U . P2 and P3 dominate P1.

In this talk, we present preliminary results based on a set of crafted instances. We
compare the branch and bound algorithms associated with the person, couple and round
models and we discuss the efficiency of the dominance rules.
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k-letter Problem: Application, Approximation and

Generalization

Anfal ALGharabally ∗ Bala Kalyanasundaram (Speaker) †

Mahe Velauthapillai ‡

In order to explore an unknown natural language and find a meaningful structure,
we considered the following simple combinatorial idea. Any long physical structure must
have support elements to maintain its shape. The weight of the structure is distributed
among the support elements. Therefore, support elements must be either strong enough
to carry the weight or frequent enough to reduce the load they carry. We view a long
string from a language as a long physical entity and seek for appropriate support ele-
ments. This approach has led us to find the vowels of any unknown spoken language
from random valid texts of the language[1]. The underlying combinatorial problem that
helped us in this process tuned out to be a generalization of the classical k-center problem
on a line with unit distance between adjacent nodes. We call this problem the k- ètter
problem. We remove the restriction that the underlying structure is a line and present
a generalized version called the k-provider problem. We present combinatorial bounds
on solving this problem exactly and approximately. This problem has two parameters
to optimize. We show how optimization of these parameters is related to the classical
Hitting Set problem[2]. However, our motive is not about the wizardry of establishing
bounds on some combinatorial problems. It is about showing how a simple combinatorial
algorithmic idea can explain a natural phenomenon and more.

k- ètter Problem: Given alphabet Σ, k ≤ |Σ|, and a string σ ∈ Σ∗, find a set
S ⊆ Σ such that |S| ≤ k and the length of the longest substring in σ without any letter
in S is minimized. The decision version of k- ètter Problem takes additional integer
input η and answers yes if and only if there exists an S ⊆ Σ such that |S| ≤ k and the
length of the longest substring in σ without any letter in S is at most η.

Unfortunately this problem is NP-Complete and it is strongly connected to the clas-
sical Hitting Set problem. In addition to the size of input |σ|, there are three additional
parameters, namely |Σ|, k and η. As we will see later that the parameter |Σ| is critical
but we cannot do any approximation on it. However, the other two parameters are
subject to minimization requirements. Can we find a good approximation algorithm for
this problem?

We first consider the possibility of approximation algorithm for the problem where
the condition on k is met while we try to minimize η.
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Theorem 1 Let Σ and σ be the alphabet and the input string respectively for the k-`
etter Problem. There is no polynomial (in |σ| and |Σ|) time poly(|Σ|) approximation (on
η) algorithm for the optimization version unless P=NP.

In order to establish the proof of this theorem, we show that the gapped decision
version of k- ètter problem is NP-Complete where the established gap on η is poly(|Σ|).

α-Gap-k- ètter Promise Problem: Given integers k, η ≥ 1, an alphabet Σ, and
a string σ ∈ Σ∗, it is a promise problem where either there exists an S ⊆ Σ such that
|S| ≤ k and the length of the longest substring in σ without any letter in S is at most
η (output “yes”) or for every S ⊆ Σ such that |S| ≤ k and the length of the longest
substring in σ without any letter in S is at least αη (output “no”).

Theorem 2 For any polynomial p, p(|Σ|)-Gap-k- ètter promise problem is NP-
Complete.

We now consider the possibility of approximation algorithm for the problem where
the condition on η is met while we try to minimize k. It turns out that our problem is
exactly equal to the Hitting Set problem.

Finally, we consider the possibility of optimizing some combination of both k and η,
say their product. Any polynomial (or less) approximation bound for our problem can
be extended to the same approximation bound for the Hitting Set problem.

Theorem 3 If there is an α-approximation algorithm for the k- ètter problem on mini-
mizing the product of k and η, then there is a α-approximation algorithm for the Hitting
Set problem.

Unfortunately approximation algorithms do not help much for our motivating prob-
lem of finding an underlying structure for natural language from a collection of texts. We
need to solve the optimization problem exactly. More precisely, our algorithm for find-
ing vowels rely on exactly solving k- ètter problem on many instances where each input
instance is sufficiently large. Fortunately our problem has a fixed parameter tractable
solution. We use a simple kernalization technique to reduce the input size of the prob-
lem to a reasonably small size. This process has considerably reduced the required time
to solve the problem exactly. We successfully tested our algorithm on eight different
natural languages from six different families [1].

Based on the notions introduced in k- ètter problem, we now define a generalization
of the classical k-center problem that we call the k-provider problem. Let G = (V,E) be
a directed edge-weighted complete graph. Let C be a set of colors. Each vertex v ∈ V
is either colored with a color in C or not colored at all. Given k, d > 0, can we find at
most k colors C ′ in C such that every uncolored vertex v ∈ V is at most distance d from
a vertex with color in C ′.

Another motivation for this definition is as follows. Imagine a city defined by a di-
rected graph G where each vertex is either a house (no color) or a supermarket (colored).
One color in C represents one supermarket chain. Imagine that you are an inventor of a
product and you want to find k supermarket chains (or providers) to carry your product.
Your goal is to minimize the distance a person travels to purchase your product. It is
not hard to see that the k- ètter problem is simply a version of k-provider problem on a
line where the distance between adjacent nodes is 1.
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It turns out that the critical parameter for our problem is |C| = |Σ|. This parameter
happens to be a small constant for our application. There is a trivial exhaustive search
algorithm for the problem with running time |C|k.|G| where |C| is total number of colors
and |G| is the size of the graph. If G is really large our kernalization method guarantee
to reduce the size G to a size not larger than a graph with |C|2|C| nodes. Once the size
of the graph is reduced, we can apply the naive algorithm to solve the problem on the
reduced graph. Our kernalization method runs in linear time. Observe that the size of
the graph after kernalization is exponential in |C|. So the reduction in input size may
appear to be insignificant. This is not the case for our application. The set of colors C
is nothing but the alphabet Σ of a natural language under consideration. For English
|C| = |Σ| = 26. So it is manageable for the intended application.

We end this with our original motivation for exploring the structural question men-
tioned at the beginning. From a 2D-point of view, a protein sequence is nothing but a
chain of amino acids. Any protein sequence contains 20 different types of amino acids.
Given an arbitrary sequence, one can synthesize the corresponding protein in a lab.
However only certain proteins occur naturally. From the point of view, there is a simple
analogy between protein sequences and strings from a natural language. In any natural
language, one can always come up with a new word. However, only certain combination
of letters are used in practice, something very similar to naturally occurring protein
sequences. Our combinatorial description seems to capture it well for natural languages.
How about protein sequences or any other natural phenomenon? There are some nat-
ural languages where our algorithm will fail since some letters in the alphabet are a
combination of a vowel and consonant. The algorithm will succeed if we split the letter
and expose vowel and consonants individually. This situation can repeat. One must be
careful in applying this idea.
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Algorithms for Hierarchical and Semi-Partitioned

Parallel Scheduling

Vincenzo Bonifaci (Speaker) ∗ Gianlorenzo D’Angelo †

Alberto Marchetti-Spaccamela ‡

1 Introduction

Multicore architectures have become the standard computing platform in many domains,
and a hierarchical organization of clusters of multiprocessing nodes, with multicore chip-
multiprocessors, is common today. In this paper, we propose a theoretical model for
scheduling jobs in a multicore architecture that can capture the cost of migrations by
assuming that the processing time of a job depends on the specific set of machines on
which the job is assigned.

This setting subsumes well-known problems, such as the unrelated machine schedul-
ing problem R||Cmax and the (preemptive) parallel machine scheduling problem
P |pmtn|Cmax, but also opens up a new class of scheduling models with their own par-
ticular challenges, such as semi-partitioned or clustered scheduling.

While the model presented here does not account exactly for the number of migrations
incurred, this number can be bounded, allowing migration costs to be accounted for in
the processing times, if desired. This allows for a flexible input representation and can
accomodate heterogeneous processors.

2 The model

We are given a set of n jobs J := {1, . . . , n} and a set of m machines M := {1, . . . ,m}.
Each job needs to be assigned to a set of machines on which the job is allowed to
schedule and it can be preempted and migrated among any such machines. However,
its processing time depends on the set of machines on which it is assigned. In detail,
we are given a family of admissible sets A ⊆ 2M , and for each job j ∈ J , a processing
time function Pj : A → Z+ with the constraint that the function must be monotone on
A, i.e., if α, β ∈ A and α ⊆ β, then Pj(α) ≤ Pj(β), modeling the fact that processing
overheads (caused, e.g., by migration) increase if the job is executed using a larger set
of machines. We define pαj := Pj(α). When α is a singleton, such as α = {i}, we also
write pij instead of p{i}j .

The interpretation is that, when the job is run on set α ⊆ A, then it can be only
migrated among the machines in α, and the processing time it receives must be Pj(α). In
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general, if a job is run on machine set M ′ (which may or may not be in A), its processing
time is pαj , where α is the inclusion-wise minimal set in A that contains M ′ (if there is
no such α, then j cannot be run on M ′).

Given J and A, an assignment of jobs in J to sets in A is a function that assigns
each job in J to a set in A. If a job j is assigned to a set α, then its processing time
is Pj(α). The set α to which a job j is assigned is also called the affinity mask of j.
Given an assignment of jobs in J to sets in A, a schedule is valid with respect to the
assignment if each job is scheduled on time slots of machines in its affinity mask, no job is
processed in parallel on more than one machine in the same time interval (though it may
be preempted or migrated), each job j receives the required amount of processing time
(i.e. pαj , if j is assigned to set α), and no machine processes more than one job in the
same time interval. We assume that a schedule starts at time 0 and allow preemptions
and migrations to occurr only at integer time points. If, in a given schedule, a job j
completes at time Cj , then T := maxj∈J Cj is called the makespan of the schedule.

In this paper, we consider the problem of finding an assignment of jobs in J to sets
in A and a corresponding valid schedule that minimizes the makespan. We restrict
the discussion to laminar (or hierarchical) instances of the problem, where, for each
α, α′ ∈ A, either α ⊆ α′ or α′ ⊆ α or α ∩ α′ = ∅. Without loss of generality, we assume
that all sets in the family A are distinct. In a laminar instance, the level of a set β is
the number of sets α ∈ A such that β ⊆ α and the level of the instance is the maximum
level among the sets in A. We call the problem with laminar instances the hierarchical
scheduling problem. The hierarchical scheduling problem generalizes some well-known
and new scheduling problems.

• Identical parallel machines scheduling with preemption (P |pmtn|Cmax) [4]: take
A = {M}. Then each job j can be migrated freely among the machines in M , as
long as it receives the processing time pMj .

• Unrelated parallel machines scheduling (R||Cmax) [3]: take A to be a family of
m singletons, i.e., A = {{1}, {2}, . . . , {m}}. Then each job must be assigned to a
single machine (no migration) and its processing time is a function of the machine.

• Semi-partitioned scheduling: take A = {M, {1}, {2}, . . . , {m}}. Then each job can
either be run globally (i.e., freely migrated) on M with processing time pMj , or
assigned locally to a specific machine i ∈M , with processing time pij ≤ pMj .

• Clustered scheduling [1]: let m = kq. Take A = {M, {1}, . . . , {m}, {1, . . . , q}, {q +
1, . . . , 2q}, . . . , {(k − 1)q, . . . , kq}}. Then each job can be run globally, or locally
to a single machine, or locally to a cluster of q machines.

Semi-partitioned scheduling generalizes scheduling on unrelated parallel machines;
hence, the following proposition is implied by existing results.

Proposition 1. Hierarchical and semi-partitioned scheduling are NP-hard to approxi-
mate within any constant factor less than 3/2.

Our main result is the following:

Theorem 1. The hierarchical scheduling problem admits a polynomial-time 2-
approximation algorithm.
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3 Outline of the approach

Our approach is to divide the problem into two subproblems: given J and A, find an
assignment of jobs in J to sets in A that admits a valid schedule in the interval [0, T ]
and minimizes T ; and given an assignment of jobs in J to sets in A that admits some
valid schedule in the interval [0, T ], construct a valid schedule in the same interval.

We show that the first subproblem is captured by the following integer linear pro-
gram.

min T (IP)
∑

α∈A
xαj = 1 for j ∈ J (1a)

n∑

j=1

∑

β⊆α
pβjxβj ≤ |α|T for each α ∈ A (1b)

pαjxαj ≤ T for each α ∈ A, j ∈ J (1c)

xαj ∈ {0, 1} for each α ∈ A, j ∈ J (1d)

We round the ILP by “pushing down” the fractional weights towards the singleton sets
of the laminar family and then invoking a standard rounding procedure. The resulting
assignment x satisfies the ILP constraints (1a)-(1d) with T ≤ 2T ∗, where T ∗ is the
optimal makespan.

For the second subproblem, we give an algorithm that takes as input a feasible
solution (x, T ) to (IP) and constructs a valid schedule with makespan T . The algorithm
works in two phases: a bottom-up load computation phase, followed by a top-down
time-slot scheduling phase. This subproblem is solved optimally.

Theorem 2. There is a polynomial time algorithm that, given a feasible solution (x, T )
to (IP), constructs a valid schedule in the interval [0, T ].

For a complete version of this work we refer to [2].
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Solving the Airline Manpower Planning Problem

Fredrik Altenstedt (Speaker) ∗ Björn Thalén † Per Sjögren ‡

Staffan Nilsson §

1 Introduction

The objective of the airline manpower planning problem is to have the right number
of crew with the right qualifications at the right time. The problem consists of making
projections of the demand for crew as well as the future productivity of crew and then
suggest decisions that will close the projected gap between supply and demand as cheaply
as possible. Here we assume that the projections are given and accurate and we are only
interested in the resulting optimization problem.

In order to track how much crew we have at our disposal for each qualification group
we divide the crew into crew-groups. A crew group is typically defined by the triplet
base-rank-equipment. An example would be Boeing 737 first officers based in Seattle.
The tools at our disposal to close the gaps can be divided into major (permanent) and
minor (transient) decisions. The major decisions are the award of transition training that
will permanently move crew from one crew-group to another. We consider hiring new
pilots as a special form of transition. The minor decisions are temporary reallocations
of supply between groups and over time, such as when to place mandatory recurrent
training, the use of overtime, and the movement of demand between crew-bases.

The airline manpower planning problem has been previously studied in the literature,
Yu, Dugan, and Agrüello have written one of the first papers on the subject [2] with
other contributions including [1] and [3]

2 Modeling

2.1 Supply and Demand

In order to track the supply and demand for each crew-group over time we discretize
the whole planning horizon into time-periods. We refer to the time-period/crew-group
combination as a bucket and add constraints to make sure that supply exceeds demand
for each bucket.

As mentioned above, crew can be moved between crew groups by assigning them to
transition training, which will permanently change which group they belong to. Training
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consumes resources such as flight simulators and flight instructors. As the instructors
also function as normal crew when not instructing, holding courses will reduce the avail-
able crew by more than just removing the students from active duty. Just as for the
crew-groups we add buckets for the training resources to make sure that demand does
not exceed supply.

In addition to the more permanent transition decisions we have the small transient
decisions such as how to when place recurrent training or when to use overtime. We
model the transient decisions using helper variables that add/remove time to buckets
subject to limits on how much of the transient activity is allowed.

2.2 Seniority

The main complicating factor when solving the airline manpower planning problem is the
seniority rules. As receiving a promotion may greatly influence compensation, training
has do be done in seniority order while respecting the wishes of the crew. This means
that a senior pilot retiring will cause many trainings as a number of pilots moves one
notch up the career-ladder. The most junior pilot in the training-chain will then be
replaced by a new recruit if needed. The seniority rules are further complicated by
lock-in rules. In order to prevent excessive amounts of transitions, a crew is usually
forced to stay in their current position for 1-5 years following a transition. Since the
length of a transition training depends on the current qualification of the student, lock
in might prevent a crew from getting an expensive assignment while at the same time
being eligible for a cheap assignment. When modeling seniority we assume that each
crew will assign a preference number to each possible training assignment. Staying in
the current position is considered an assignment like any other and is given it’s own
preference. In addition each crew will have a unique seniority number with respect to
each assignment. We denote the preference and seniority of a crew c for a training slot
t by p(c, t) and s(c, t) respectively. Lower preference number means better and lower
seniority number means more senior. Using these two functions we can model a great
variation of seniority rules. Abstracting the seniority rules in this way decopules the
rules of a specific airline from the solver, the drawback is that we can not accurately
express seniority rules involving more than two crew.

Seniority is violated if crew A prefers the assignment of crew B to his own and crew
A has better seniority than crew B for that assignment. If we assume we have binary
variables xc,t determining if a crew c gets an assignment t, the seniority rules protecting
c̄ from ĉ with respect to the assignment t̂ can be expressed as

∑

t̄:p(c̄,t̄)≤p(c̄,t̂)

xc̄,t̄ ≥ xĉ,t̂

Note that assignment t̂ need not be legal for crew c̄ for the constraint to apply. By using
the assumption that each crew gets exactly one assignment, these constraints can be
strengthened and redundant constraints removed, see [4] for further details.

3 Solution approach

Due to the lock-in rules preventing multiple transitions it is possible to enumerate all
possible legal training assignments for all crew. For each of these assignments it is
straight forward to compute how the crew will contribute to different buckets.
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Given the set of all training assignments we can formulate the problem as a MIP
problem, although that problem will be too large to actually solve (when experimenting
with a medium sized European carrier CPLEX was unable to find even an initial solu-
tion within a reasonable time-frame). Such a formulation is however still very useful as a
reference for testing our heuristic solution approach. Instead we solve the problem by us-
ing an initial heuristic followed by repeated application of very large-scale neighborhood
search for different types of neighborhoods.

The main neighborhood used is the seniority neighborhood. For a given seniority
feasible solution and a potential new training assignment t for crew c, we count how
many other crew must change assignment if c is to legally get the assignment t. We then
use this number to determine if the assignment is included in the neighborhood or not.
Other neighborhoods are based on time-periods as well as qualification groups.

The initial solution algorithm works by taking a rather large N-seniority neighbor-
hood and relaxing the integrality. The fractional solution given is used in a rounding
heuristic producing a given number of moves and these are then legally assigned to crew
by solving another restricted problem.

4 Results

During the presentation we will show the results from two different airlines.

References

[1] Gang Yu et al. (2004). Optimizing pilot planning and training for Continental
Airlines. Interfaces 34.4 (2004), pp. 253-264.

[2] Gang Yu, Stacy Dugan, and Mike Argello (1998). Moving toward an in-
tegrated decision support system for manpower planning at Continental Airlines:
Optimization of pilot training assignments Industrial Applications of Combinato-
rial Optimization. Springer, 1998, pp. 124.

[3] Milind G Sohoni, Ellis L Johnson, and T Glenn Bailey (2004). Long-range
reserve crew manpower planning Management Science 50.6 (2004), pp. 724739.

[4] B. Moren (2012). Using problem specific structures in branch and bound methods
for manpower planning.. Masters Thesis, University of Linköping.
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Decomposition Algorithms for Synchronous Flow Shop

Problems With Additional Resources and Setup Times

Sigrid Knust (Speaker) ∗ Stefan Waldherr †

1 Introduction

A flow shop with synchronous movement (“synchronous flow shop” for short) is a variant
of a non-preemptive permutation flow shop where transfers of jobs from one machine to
the next take place at the same time (cf. [1, 2]). Given are m machines M1, . . . ,Mm and
n jobs where job j consists of m operations O1j → O2j → . . . → Omj . Operation Oij

has to be processed without preemption on machine Mi for pij time units. In a feasible
schedule each machine processes at most one operation at any time, each job is processed
on at most one machine at any time, and the jobs are processed in the predefined order.

The processing is organized in synchronized cycles where jobs are moved from one
machine to the next by an unpaced synchronous transportation system. This means that
in a cycle all current jobs start at the same time on the corresponding machines. Then
all jobs are processed and have to wait until the last one is finished. Afterwards, all jobs
are moved to the next machine simultaneously. The job processed on the last machine
Mm leaves the system, a new job (if available) is put on the first machine M1. As a
consequence, the processing time of a cycle is determined by the maximum processing
time of the operations contained in it. Furthermore, only permutation schedules are
feasible, i.e. the jobs have to be processed in the same order on all machines. The
completion time Cj of a job j is equal to the time when it has been processed on all
machines and leaves the system. The goal is to find a permutation π of the jobs such that
the makespan Cmax = maxj Cj is minimized. With each permutation a corresponding
(left-shifted) schedule is associated in which each operation starts as early as possible.

In this work, we further consider renewable job resourcesR and assume that every job
j needs a single assigned resource from a subset R(j) ⊆ R during its whole processing,
from its start on M1 until its removal from Mm. After a job is completed on Mm, the
corresponding resource may immediately be used by the next job starting on M1 (i.e.,
the job occurring m positions later in the job permutation). If the resource is not feasible
for the next job, it must be changed, requiring a certain setup time.

Fig. 1 shows an exemplary configuration of a circular production unit with m = 4
machines where the required resources are specialized work piece carriers which are
equipped to transport jobs on the production unit. The jobs enter the unit at machine
M1. After each cycle, the unit rotates clockwise and all jobs are transported to the next
machine with the help of the work piece carriers. At M4, the current job is removed
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supported by the Deutsche Forschungsgemeinschaft, KN 512/7-1.
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from the production unit and at the end of the cycle the work piece carrier moves back
to M1. At this point, a setup is necessary if the next job to be inserted on M1 requires a
different work piece carrier. The schedule depicts the possible setups that occur between
jobs m = 4 positions apart in the permutation π. The makespan is equal to the sum of
all cycle times plus the sum of all setup times.
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2

3
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· · ·

Figure 1: A circular production unit with m = 4 machines

If additionally resources have to be considered, a feasible schedule may be represented
by a job permutation π = (π1, . . . , πn) and a corresponding resource sequence % =
(%1, . . . , %n) with %i ∈ R(πi) for i = 1, . . . , n where no resource r ∈ R appears more than
once in any m consecutive positions of %.

For the resource sets R(j) we distinguish the following situations:

(R1) All jobs can be processed by all resources (i.e., R(j) = R for all jobs j ∈ J ).

(R2) The jobs are partitioned into disjoint families F , where each job in a family can be
processed by the same set of resources (i.e., if R(j)∩R(h) 6= ∅, then R(j) = R(h)).
This situation is motivated by practical applications where similar jobs can all be
processed by the same resources.

(R3) The sets R(j) are arbitrary subsets of R.

In situation (R1), no setups are necessary since each job can use the same resource
which was used by its predecessor in the subsequence. In contrast, in situations (R2)
and (R3), we also have to take into account that a feasible resource sequence % must
satisfy %i ∈ R(πi) for i = 1, . . . , n.

2 Decomposition algorithms

Minimizing the makespan in a synchronous flow shop with additional setup times is
strongly NP-hard even in the case of two machines, unlimited resources of type (R2)
and equal setup times (cf. [3]). In the following we propose two decomposition strategies
for the practically relevant situation (R2) (cf. also [3]). Both decomposition approaches
can be used to calculate lower bounds as well as heuristic solutions. To get lower bounds,
we consider the two objective functions of minimizing the sum of cycle times and the
sum of setup times separately.

Decomposition D1:

1. Determine a permutation π = (π1, . . . , πn) of all jobs.
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2. Assign a feasible resource %i ∈ R(πi) to each job πi for i = 1, . . . , n such that no
resource appears more than once in m consecutive positions.

Note that the sum of cycle times is completely determined by the permutation π obtained
in Step 1. However, it may happen that for a permutation π no corresponding feasible
resource assignment exists. Within this approach, we first determine a job permutation
with a small sum of cycle times heuristically and afterwards find a corresponding optimal
resource assignment minimizing the sum of all setup times (which can efficiently be done
in O(n)). Then a tabu search is applied using a swap neighborhood, where two jobs in
π are exchanged and the resources for these two jobs are reassigned after the swap.

Decomposition D2:

1. Determine a sequence % = (%1, . . . , %n) of resources such that no resource appears
more than once in m consecutive positions.

2. Assign to each resource in the sequence a corresponding job which may be processed
by this resource.

Note that the sum of setup times is completely determined by the sequence % obtained
in Step 1. For resources of type (R2) and equal setup times, finding a feasible resource
sequence % minimizing the sum of setup times can be calculated in time polynomial in n
if the number of machines is fixed. It is strongly NP-hard if the number of machines is
part of the input. In Step 2, for a given resource sequence % we try to find a corresponding
optimal job permutation minimizing the sum of all cycle times. Since this problem is
strongly NP-hard (cf. [3]), we solve it heuristically. Then, again a tabu search algorithm
is applied where at first the resource sequence is changed and then a new corresponding
permutation π is determined.

The two approaches were tested on two sets of instances (modified benchmark in-
stances of Taillard and real-world data) and computational results are presented.
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An Integer Linear Programming Approach for Handling

New Real-World Motivated Constraints of the

Curriculum-Based Course Timetabling Problem∗

Philipp Hungerländer † Kerstin Maier (Speaker) ‡

1 Introduction

The task of the curriculum-based course timetabling problem (CB-CTT) is to schedule
lectures belonging to a set of courses C = {c1, c2, . . . , cv} to k periods P = {p1, p2, . . . , pk}
and m rooms R = {r1, r2, . . . , rm}, accounting at the same time for certain hard and soft
constraints. In the CB-CTT the timetable is generated based upon a set of s university
curricula I = {i1, i2, . . . , is}, to which the courses belong. The goal of the International
Timetabling Competitions ITC2002 and ITC2007 was to establish models for comparison
that cover the most frequently found use cases.

Our model, motivated by a project with University College London (UCL), builds on
the standard model from track 3 of ITC2007 [3]. The UCL timetabling problem presents
a wide range of challenges, since its features and additional constraints substantially ex-
ceed the ones from the ITC-2007 framework. We mention here only the most interesting
extensions from an academic viewpoint:

1. Our courses consist of activities with different durations, which relaxes the indis-
tinguishability assumption of lectures from the literature. Therefore we define the
set of all activities A = {a1, a2, . . . , an} with corresponding durations of activities
da, a ∈ A.

2. The UCL framework aims to generate feasible timetables for a set W of 10 consec-
utive weeks in a manner that guarantees the highest possible timetable regularity.
This means that whenever possible, activities should be scheduled in the same pe-
riod and room over the different weeks. We introduce the corresponding timetable
regularity metric, which measures the consistency of time and room assignments
for a course throughout the term.

3. The activities have a specific predefined type, which must match the room type of
the assigned room.

In the following section we suggest an Integer Linear Programming (ILP) approach
for solving this expanded problem, conduct computational experiments and discuss the
results obtained with respect to solution quality and practical suitability for UCL.
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Research Proceedings 2016.
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2 The Integer Linear Programming Formulation

Our ILP solver is based on the ILP approach suggested by Lach and Lübbecke [2].
The problem is split into two stages. In the first stage, each activity is assigned to an
appropriate set of consecutive time periods. The assignment of activities to rooms is
done in the second stage. Due to space limitation, we state the mathematical formulation
only for the second stage and for the first stage we solely mention the most important
newly developed constraints.

First Stage: In the first stage each activity has to be scheduled in a consecutive set of
time periods. The function D(p) gives the day of period p. Now if activity a is scheduled
at period p, then the binary variable xap is set to 1. Otherwise we have xap = 0. To
ensure that an activity is assigned to consecutive time periods, we also need binary
variables sap, which are set to 1, if activity a starts at period p. Otherwise we have
sap = 0. Note that variable sap is only introduced, if there are at least da−1 consecutive
time periods available after period p on the same day:

xap −
p∑

t=p−da+1
sat exists

sat = 0, a ∈ A, p ∈ P,
∑

sap exists

sap = 1, a ∈ A.

The first set of equalities ensures that each activity is assigned to a set of consecutive
time periods that all belong to the same day. The second set of equalities guarantees
that each activity has exactly one start time period.

One of our main goals for UCL is to minimize the total number of rooms required.
While this goal is clearly part of the objective function of the Second Stage, we also need
to consider it during the First Stage. We propose the following constraints in order to
restrict the total number of activities scheduled per time period:

∑
a∈A xap ≤M, p ∈ P ,

where M is an integer variable that is multiplied by a penalty term pM in the objective
function of the First Stage. Without these inequalities arbitrarily many activities could
be assigned to the same time period during the First Stage, which could leave us with
no possibility to minimize the number of rooms required in the Second Stage.

Second Stage: After solving the First Stage, in the Second Stage we determine feasible
rooms for the activities, where we aim to minimize the following objectives:

1. The number of students, which have no seat during an activity.
2. The number of empty seats in a room during an activity.
3. The total number of rooms.

In order to build an ILP model for the Second Stage, we introduce binary variables ur,
yar and zarp with the following interpretations:
• ur = 1, if at least one activity is scheduled in room r. Otherwise ur = 0.
• yar = 1, if activity a is scheduled in room r. Otherwise yar = 0.
• zarp = 1, if activity a is scheduled in room r at period p. Otherwise zarp = 0.

Note that the variables yar and zarp are only introduced, if it is feasible to schedule
activity a in room r at period p, i.e. if the activity type matches with the room type,
if the activity is assigned to period p in the First Stage and if the room is available at
period p. Accordingly we define P (a), P (r) and P (a, r) as the sets of available time
periods for activity a, for room r and for their combination respectively. Analogously
we specify A(r) and A(p, r) as the sets of feasible activities for room r at period p and
R(a, p) as the set of feasible rooms for activity a at period p.
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For each feasible activity-room combination we introduce a penalty parameter par
that gives the absolute value of the difference between the available seats in room r
and the number of students registered for activity a. We also introduce the penalty
parameter pr giving the costs for using room r. Now we can state our ILP model:

min
∑

a∈A, r∈R(a,p)

paryar +
∑

r∈R
prur (1a)

s.t.
∑

r∈R(a)

zarp = 1, a ∈ A, p ∈ P (a), (1b)

dayar −
∑

p∈P (a,r)

zarp = 0, r ∈ R, a ∈ A(r), (1c)

∑

a∈A(p,r)

zarp − ur ≤ 0, r ∈ R, p ∈ P (r), (1d)

ur ∈ {0, 1}, yar ∈ {0, 1}, zarp ∈ {0, 1}, r ∈ R, a ∈ A(r), p ∈ P (a, r). (1e)

Equalities (1b) guarantee that exactly one room is assigned to an activity at each time
period. Equalities (1c) ensure that the same room is assigned to all time periods of an
activity. Constraints (1d) guarantee that at most one activity is assigned to room r at
each time period and also ensure ur = 1, if at least one activity is scheduled in r.

Computational Experiments: Finally we present the results obtained by using our
ILP approach on a selection of the original set of UCL curricula, available at http:

//tinyurl.com/timetabling-lib. All experiments were performed on a Linux 64-bit
machine equipped with 4 × Intel(R) Xeon(R) CPU e5-2630 v3@2.40GHz and 16 GB
RAM. We use Gurobi 6.5.1 as our ILP-solver.

Our benchmark set consists of around 250 activities per week with an average length
of ≈ 3.5 time periods. Each week consists of 5 days with 18 time periods (a 30 minutes)
per day. In each week we use around 20 of the available 279 rooms. Within 190 seconds
computing time we obtained timetables for the entire term with a very high timetable
regularity. Furthermore in our timetables used rooms are more than 3

4 full and rooms,
which are used at least once, are occupied almost 50% of the total available time periods.
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Scheduling Meets n-fold Integer Programming

Dušan Knop (Speaker) ∗ Martin Koutecký †

Introduction. Scheduling problems are fundamental in combinatorial optimization.
Much work has been done on approximation algorithms for NP-hard cases [9], but rel-
atively little is known about exact solutions when some part of the input is a fixed
parameter. In 2014, Mnich and Wiese [6] initiated a systematic study in this direction.

However, our goal is not merely to prove new positive results. In their work, Mnich
and Wiese rely on mathematical programming techniques in fixed dimension, which have
been introduced in 1983 by Lenstra [5] and significantly extended in 2000 by Khachiyan
and Porkolab [3]. These techniques are by now well established in the FPT community,
even though the power of the latter extension due to Khachiyan and Porkolab has not
been fully utilized yet. Independently of this, a new theory of variable dimension opti-
mization has been developed in the past 15 years; see Onn’s book [7]. A breakthrough
result is an FPT algorithm for the so-called n-fold integer programming (n-fold IP) by
Hemmecke, Onn and Romanchuk [1]. In contrast to the fixed dimension techniques,
n-fold IP is not yet established as an indispensable part of an FPT researchers toolbox.
This is what we would like to change.

The new tool – n-fold integer programming. Given nt-dimensional integer vectors
b,u, l,w, n-fold integer programming (n-fold IP) is the following problem in variable
dimension nt:

min
{
wx : A(n)x = b , l ≤ x ≤ u , x ∈ Znt

}
, where (1)

A(n) :=




A1 A1 · · · A1

A2 0 · · · 0
0 A2 · · · 0
...

...
. . .

...
0 0 · · · A2




is an (r + ns) × nt matrix with A1 an r × t matrix and A2 an s × t matrix. Let a
be the biggest number in A(n). The vector x is naturally partitioned into n bricks of
size t, that is, we index it as x = (x1

1, x
1
2, . . . , x

1
t , . . . , x

n
1 , . . . , x

n
t ). As such, n-fold IP

is best suited for multi-index problems whose IP formulation has variables indexed by
[n]× [l1]×· · ·× [lk] for some integers n, l1, . . . , lk such that l1, . . . , lk are fixed parameters
and only n is variable.

∗knop@kam.mff.cuni.cz. Department of Applied Mathematics, Charles University, Prague, Czech
Republic
†koutecky@kam.mff.cuni.cz. Department of Applied Mathematics, Charles University, Prague,

Czech Republic

62



In their seminal paper Hemmecke, Onn and Romanchuk [1] prove that there is an
FPT algorithm solving problem (1) with parameters r, s, t and a.

Our contribution. We consider three non-preemptive scheduling models of increasing
generality: parallel identical, uniformly related and unrelated machines (in the standard
notation [4] denoted by P,Q and R, respectively), and the two most common objective
functions: minimizing makespan and sum of weighted completion times (denoted Cmax

and
∑
wiCi, respectively).

Formally, for identical machines, the problem consists of a set of n jobs J =
{J1, . . . , Jn} and m machines M = {M1, . . . ,Mm}, and each job Ji has a processing
time pi ∈ N. For uniformly related machines, we additionally have for each machine
Mj its speed sj ∈ N, such that processing job Ji on machine Mj takes time pi/sj . For
unrelated machines, we have for each job Ji an m-dimensional vector p = (p1

i , . . . , p
m
i ),

pji ∈ N ∪ {∞} for all j, such that processing job Ji on machine Mj takes time pji (in

case pji = ∞, Ji cannot be executed on Mj). We also consider a restricted variant of
the unrelated machines model where there are K kinds of machines and the vector of
processing times for a job Ji is given with respect to kinds of machines: p = (p1

i , . . . , p
K
i ),

such that processing Ji on machine Mj of kind k takes time pki . Additionally, for the sum
of weighted completion times objective, we are given for each job Ji its weight wi ∈ N.

The parameters we consider are the following:

• pmax: the maximum processing time of any job,

• wmax: the maximum weight of any job,

• m: the number of machines,

• θ: the number of distinct job processing times and weights (in case of the
∑
wiCi

objective)

• K: the number of kinds of machines (defined above).

Our Results.

Theorem 1. The following scheduling problems are FPT with respect to parameter Θ
as defined below and solvable in time ΘO(Θ2)nO(1), where

1. Q||Cmax: Θ = pmax

2. R||Cmax: Θ = pKmax

3. R||∑wjCj: Θ = (max{pmax, wmax})K

Conclusions Although much is known about approximating the scheduling problem,
little is known from the parameterized complexity point of view about the most basic
problems. The purpose of this paper is twofold. The first is to show new FPT algorithms
for some scheduling problems. The second is to demonstrate the use of n-fold integer
programming, a recent and powerful variable dimension technique. We hope to encour-
age research in both directions. To facilitate this research, we point out the following
open problems:
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• Minimizing weighted flow time P |rj |
∑
wjFj parameterized by pmax + wmax.

• P ||Cmax parameterized by the number of different processing times instead of pmax.

• R|pmtn|∑Cj parameterized by m and pmax; this is justified by the problem being
strongly NP-hard [10], so parameterizing by pmax is not enough.

• P ||Cmax parameterized by pmax with both m and n given in binary; this might be
possible using techniques related to the recently developed result for huge n-fold
IPs of Onn and Sarrabezolles [8].

• Multi-agent scheduling was studied by Hermelin et al. [2]; what results can be
obtained by applying n-fold IP?

• We are also interested in further applications of n-fold IP and quasiconvex mini-
mization over convex sets in fixed dimension.
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Online Packet Scheduling with Bounded Delay and

Lookahead

Martin Böhm∗ Marek Chrobak†  Lukasz Jeż‡ Fei Li§ Jǐŕı Sgall∗

Pavel Veselý (Speaker)∗

Introduction. In the online bounded-delay packet scheduling problem
(PacketScheduling), packets of unit size arrive at a router over time and need to be
transmitted over a network link. Each packet has two attributes: a non-negative weight
and a deadline for its transmission. The time is assumed to be discrete (slotted), and
only one packet can be sent in each slot. The objective is to maximize the total weight
of the transmitted packets.

This problem was introduced by Kesselman et al. [10] as a theoretical abstraction
that captures the constraints and objectives of packet scheduling in networks that need to
provide quality of service (QoS) guarantees. The combination of deadlines and weights
is used to model packet priorities. In the literature, the PacketScheduling problem is
sometimes referred to as bounded-delay buffer management in QoS switches. It can
also be formulated as the job-scheduling problem 1|pj = 1, rj |

∑
wjUj , where packets

are represented by unit-length jobs with deadlines, with the objective to maximize the
weighted throughput. We focus on the deterministic online setting only.

A simple online greedy algorithm that always schedules the heaviest pending packet
is known to be 2-competitive [9, 10]. This ratio was first improved by Chrobak et al. [5],
and the best currently known ratio is 2

√
2 − 1 ≈ 1.828 [6]. The best lower bound,

widely believed to be the optimal ratio, is φ = 1
2(1 +

√
5) ≈ 1.618 [9, 2, 4]. Closing

the gap between these two bounds is one of the most intriguing open problems in online
scheduling.

s-Bounded instances. In an attempt to bridge this gap, restricted models have
been studied. In the s-bounded variant of PacketScheduling, each packet must be sched-
uled within k consecutive slots, starting at its release time, for some k ≤ s possi-
bly depending on the packet. In other words, we assume that each packet p satisfies
dp ≤ rp + s− 1 where rp is the release time and dp is the deadline which is the last slot
where p can be scheduled.

The lower bound of φ from [9, 2, 4] holds even in the 2-bounded case. A matching
φ-competitive algorithm was given Kesselman et al. [10] for 2-bounded instances and
by Chin et al. [3] for 3-bounded instances. Both results are based on the algorithm
EDFα, with α = φ, which always schedules the earliest-deadline packet whose weight is
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at least the weight of the heaviest pending packet divided by α (ties are broken in favor
of heavier packets). EDFφ is not φ-competitive for 4-bounded instances; however, for
α =
√

3 ≈ 1.732 the algorithm is
√

3-competitive for the 4-bounded case [3].

We present a φ-competitive online algorithm for PacketScheduling restricted to 4-
bounded instances, matching the lower bound of φ. This improves the results from [3]
and answers the question posed by Goldwasser in his SIGACT News survey [7].

Our algorithm, which we call ToggleH, can be seen as a modification of EDFφ, which
under certain conditions schedules a packet lighter than wh/φ where h is the heaviest
pending packet. It maintains one mark that may be assigned to one of the pending
packets. For a given step t, we choose the following packets from among all pending
packets:

h = the heaviest packet,
s = the second-heaviest packet,
f = the earliest-deadline packet with wf ≥ wh/φ, and
e = the earliest-deadline packet with we ≥ wh/φ2.

We then proceed as follows:

if (h is marked in the previous step) ∧ (ws < wh/φ) ∧ (de = t)
schedule e
if (dh = t+ 3) ∧ (df = t+ 2) then mark h

else
schedule f

We remark that our algorithm uses memory. It is an interesting question whether there
is a memoryless φ-competitive algorithm for 4-bounded instances.

Algorithms with 1-lookahead. We investigate a variant of PacketScheduling
where an online algorithm is able to learn at time t which packets will arrive by time
t+1. This property is known as 1-lookahead. From a practical point of view, 1-lookahead
corresponds to the situation in which a router can see the packets that are just arriving
to the buffer and that will be available for transmission in the next time slot.

The notion of lookahead is quite natural and it has appeared in the online algorithm
literature for paging [1], scheduling [11] and bin packing [8] since the 1990s. Ours is
the first paper, to our knowledge, that considers lookahead in the context of packet
scheduling.

We provide two results about PacketScheduling with 1-lookahead, restricted to 2-
bounded instances. We present an online algorithm with competitive ratio of 1

2(
√

13 −
1) ≈ 1.303 and prove a nearly tight lower bound of 1

4(1+
√

17) ≈ 1.281 on the competitive
ratio of algorithms with 1-lookahead which holds already for the 2-bounded case.

The lower bound is constructed in a similar way as the lower bound of φ [9, 2, 4].
We can also generalize the construction for `-lookahead which allows the algorithm at
time t to see all packets arriving by time t + ` for an integer ` ≥ 0; the lower bound is
then 1

2(`+1)(1 +
√

5 + 8`+ 4`2) and uses only 2-bounded instances for any `.

The algorithm for 2-bounded instances with 1-lookahead is based on plans, called
also provisional schedules. We define the plan in step t to be the optimal schedule in
the time interval [t,∞) that consists of pending and lookahead (i.e., released at t + 1)
packets at time t. We consider plans to be an important notion for designing algorithms
for PacketScheduling; even the 1.828-competitive algorithm by Englert and Westermann
uses plans.
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An Adversarial Model for Scheduling With Testing

Christoph Dürr ∗ Thomas Erlebach † Nicole Megow ‡

Julie Meißner (Speaker) §

Introduction

We consider a single machine scheduling problem with n jobs under the objectives of
minimizing the makespan and the sum of completion times, respectively. Every job j
can be tested prior to its execution. A non-tested job has processing time p̄j ∈ Q+,
while a tested job has processing time 0 6 pj 6 p̄j . It takes one time unit to test a job.
Initially, the algorithm knows for each job j only the upper bound p̄j , and gets to know
the time pj only after a test. Tested jobs can be executed at any moment (after their
test). We use competitive analysis to assess the performance of algorithms.

Applications for this setting occur when a job j can be processed either under the
safe method which takes time p̄j or under an alternative method which takes time pj .
However, the alternative method is not always possible, and a preliminary test needs to
be done first. For example, when a set of programs need to be processed on a single
machine, it is possible to run a code optimizer taking unit time before executing a
program. The code optimization might reduce the running time of the job, but the
amount of improvement is uncertain. Similarly, for the transmission of a set of files it is
possible to run a compression algorithm for each file before the transmission. This might
significantly reduce the transmission time, but could also fail if the file is uncompressable
or already compressed.

Any online algorithm needs to decide upon testing a job without knowing the pro-
cessing time after testing it. Testing a job early yields new information early in the
procedure, but at the same time it delays the completion time of many jobs. Thus, a
careful balancing of how many jobs to test and at which time, is necessary.

Related Work. The line of research on optimization with explorable uncertain data has
been initiated by Kahan [6] in 1991. His work concerns selection problems with the goal
is to minimize the number of queries that is necessary to find the optimal solution. Later,
other problems studied in this uncertainty model include finding the k-th smallest value
in a set of uncertainty intervals [6, 5], caching problems in distributed databases [10],
computing a function value [7], and classical combinatorial optimization problems, such
as shortest path [2], the knapsack problem [4], and the MST problem [1, 9].
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While most works aim for minimal query sets to guarantee exact optimal solutions,
Olsten and Widom [10] initiate the study of trade-offs between the number of queries
and the precision of the found solution. They are concerned with caching problems.
Further work in this vein can be found in [7, 2].

Scheduling and testing jobs with uncertain processing time on one machine to min-
imize the weighted sum of completion times has been introduced in a talk by Levi [8].
They consider a stochastic model, where processing times are drawn independently from
a uniform distribution and propose an efficiently solvable dynamic program for it.

Minimizing the Sum of Completion Times

Deterministic algorithms

We give two deterministic algorithms with competitive ratio 2. Our first algorithm,
Bound2 considers jobs in order of non-decreasing p̄j . All jobs with p̄j ≤ 2 will be
executed untested. Then all remaining jobs are tested. If the revealed processing time
of job j is pj ≤ 2, then the job is executed immediately after its test. After all pending
jobs have been tested, they are scheduled in order of increasing processing time pj . An
example of such a schedule is displayed in Figure 1.

. . . . . . . . .

Figure 1: Schedule, where jobs with p̄j ≤ 2 are colored blue, and the other jobs colored
green if they get delayed and colored red otherwise. The striped schedule sections denote
executions of jobs, while the white sections with a colorful frame represent tests of jobs.

We analyze this algorithm by first considering the simpler case where any job has
processing time at least 2 or processing time 0 and then showing this is the worst-case.

Theorem 1. The algorithm Bound2 is a 2-competitive algorithm.

We also show that alternating the behavior between immediate execution and delayed
execution for jobs with pj ∈ (2− ε, 2 + ε) does not improve the competitive ratio.

For a lower bound we consider two jobs with identical large upper limit p̄j = M . We
list all possible algorithms executing two jobs and optimize the value of M to get the
best-possible lower bound for this example. Setting M ≈ 1.877 yields

Theorem 2. There is no deterministic c-competitive algorithm for c < 5+
√
241

12 ≈ 1.71.

A randomized algorithm

We give a randomized algorithm RTE using two thresholds T and E. The algorithm
executes all jobs with p̄j < T without testing ordered by increasing p̄j . Then it tests
all jobs with p̄j ≥ T in random order and schedules each tested job immediately if
pj ≤ E. Deferred jobs are executed in increasing order of processing-time at the end of
the schedule. Again, the algorithm schedule follows the pattern of Figure 1 with blue
jobs having p̄j ≤ T , red jobs having pj < E, and green jobs having pj ≥ E.
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We show that one can assume the processing times pj are from the set {0, T, E,E+ε}
for a small ε > 0. Using case analysis we prove there are three tight cases for the ratio
of jobs from each class. This insight simplifies the formulas significantly, allowing to find
the optimal values T = 1.74526, E = 2.86091 for the best algorithm performance.

Theorem 3. Algorithm RTE is ≈ 1.74-competitive.

To derive a lower bound on the best possible competitive ratio, we construct a random
instance and apply Yao’s principle. The probability distribution over inputs is as follows:
There are n jobs and each job j has upper bound u > 1. Its processing time pj is set to
0 with probability 1

u and to u with probability 1 − 1
u . We estimate OPT by assuming

that there are exactly n/u jobs with pj = 0 and n(1− 1/u) jobs with pj = u.
The ratio of the expected algorithm cost and the expected optimal cost is maximized

for u = 1.5 + 1
2

√
3 ≈ 2.366 which gives by Yao’s principle the following lower bound.

Theorem 4. No randomized algorithm can achieve a competitive ratio less than 1.62575.

Minimizing the Makespan

We consider the same problem setting under the makespan objective. We show that
the following algorithm has best-possible competitive ratio: Test a job j if and only if
p̄j > ϕ, where ϕ is the golden ratio, which is roughly 1.618. We show that then the
processing time (including a possible test) of any job executed by the algorithm is at
most ϕ times the processing time in the optimal schedule. A lower bound of ϕ on the
competitive ratio of any deterministic algorithm follows from a single job.

Theorem 5. The algorithm has an optimal competitive ratio of ϕ ≈ 1.618.
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Online Chromatic Number is PSPACE-Complete

Martin Böhm (Speaker)∗ Pavel Veselý∗

Introduction. In the classical graph coloring problem we assign a color to each vertex
of a given graph such that the graph is properly colored, i.e., no two adjacent vertices
have the same color. The chromatic number χ of a graph G is the smallest k such that
G can be colored with k distinct colors. Deciding whether the chromatic number of a
graph is at most k is well known to be NP-complete, even in the case with three colors.

The online variant of graph coloring can be defined as follows: The vertices of G
arrive one by one, and an online algorithm must color vertices as they arrive so that the
revealed graph is properly colored at all times. When a vertex arrives, the algorithm sees
edges to previously colored vertices. The online algorithm may use additional knowledge
of the whole graph G; more precisely, a copy of G is sent to the algorithm at the start
of the input. However, the exact correspondence between the incoming vertices and the
vertices of the copy of G is not known to the algorithm. This problem is called Online
Graph Coloring.

Graph coloring is of considerable interest to the scheduling community due to its ap-
plication for scheduling objects with general incompatibility constraints. As Halldórsson
[4] writes, online graph coloring corresponds to various dynamic scheduling situations,
including channel allocation, storage allocation and communication in massively parallel
networks.

In this work we focus on a graph parameter called the online chromatic number
χO(G) of a graph G. This parameter is analogous to the standard chromatic number of
a graph: It denotes the smallest number k such that there exists a deterministic online
algorithm which is able to color the specified graph G using k colors for any incoming
order of vertices.

The online problem Online Graph Coloring has been known since 1976 [1], and
the notion of the online chromatic number has appeared first in 1990 [3]. One of the open
problems in the area was the computational complexity of deciding whether χO(G) ≤ k
for a specified simple graph G, given G and k on input; see e.g. Kudahl [6]. We denote
this decision problem as Online Chromatic Number. We fully resolve this problem:

Theorem 1 The decision problem Online Chromatic Number is PSPACE-
complete.

As is usual in the online computation model, we can view Online Graph Col-
oring as a game between two players, which we call Painter (representing the online
algorithm) and Drawer (often called Adversary in the online algorithm literature).

∗{bohm,vesely}@iuuk.mff.cuni.cz. Computer Science Institute of Charles University, Prague,
Czech Republic. Supported by the project 17-09142S of GA ČR. The result was first presented at
IWOCA 2016 [2].
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In each round Drawer chooses an uncolored vertex v from G and sends it to Painter
without telling him to which vertex of G it corresponds, only revealing the edges to the
previously sent vertices. Then Painter must properly color (“paint”) v, i.e., Painter
cannot use a color of a neighbor of v. We stress that in this paper Painter is restricted
to be deterministic. The game continues with the next round until all vertices of G are
colored.

Deciding the outcome of many two-player games is PSPACE-complete; among those
are Amazons, Checkers and Hex, to name a few. However, in most of these games
both players have roughly the same power. In Online Graph Coloring, the player
Drawer has perfect information (knows which vertices are sent and how they are col-
ored) but Painter does not. This is the main difficulty in proving PSPACE-hardness.

Proof outline. The fact that Online Chromatic Number belongs to PSPACE is
not hard to see: The online coloring is represented by a game tree which is evaluated
using the Minimax algorithm. This can be done in polynomial space, since the number
of rounds in the game is bounded by n, i.e., the number of vertices, and possible moves
of each player can be enumerated in polynomial space.

x1,t x1,f xix3,t x3,fx2,t x2,f

∀x1∃x2∀x3: (x1 ∧ ¬x2 ∧ x3) ∨ (¬x1 ∧ x2 ∧ x3)

l1,1 l1,2 l1,3 l2,1 l2,2 l2,3

x2,h

d1 d2

F

Figure 1: The construction for a sam-
ple formula. In the top row of the
formula gadgets there are two ver-
tices for a universal quantified variable
and three for an existentially quanti-
fied one. The layers below are there for
each literal, clause and finally one for
the final satisfiability test.

Inspired by [6], we prove the PSPACE-
hardness of Online Chromatic Number by
a reduction from Q3DNF-SAT, i.e., the sat-
isfiability of a fully quantified formula in the
3-disjunctive normal form (3-DNF). The sim-
ilar problem of satisfiability of a fully quan-
tified formula in the 3-conjunctive normal
form is well known to be PSPACE-complete.
Since PSPACE is closed under complement,
Q3DNF-SAT is PSPACE-complete as well.

Construction with a large precolored
part. Our first construction will reduce the
PSPACE-complete problem Q3DNF-SAT to
Online Coloring with Precoloring with
a large precolored part. Given a fully quantified
formula Q in the 3-disjunctive normal form, we
will create a graph G1 that will simulate this
formula.

Our main resource will be a large precolored
clique Kcol on k vertices and naturally using
k colors; the number k will be specified later.
Using such a precolored clique, we can restrict
the allowed colors on a given uncolored vertex
v by connecting it with the appropriate vertices
in Kcol, i.e., we connect v to all vertices in Kcol

which do not have a color allowed for v.
Recall that we see Online Graph Coloring as a game between two players,

Painter and Drawer. Assuming that the given formula is unsatisfiable, Drawer
first reveals gadgets corresponding to variables. By assigning colors, Painter actually
chooses an assignment for the variables. No matter which assignment is selected, the
resulting graph will need at least k + 1 colors.
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Assuming that the given formula is satisfiable, if Drawer keeps the same order of
incoming vertices as before, Painter can use the knowledge of the satisfiable assignment
to save one color. If Drawer ignores this ordering and sends one vertex from a later
stage, the player Painter gains more information about the graph to be able to color
it later as if the vertices arrived in the right order.

See Figure 1 for an illustration of the construction.

Construction with a precolored part of logarithmic size. As a second step
towards the general case without precoloring, we show how to reduce the required number
of precolored vertices to logarithmic size.

Figure 2: Node

We start with the construction of the previous section, but uncolor
the large clique. Instead, each vertex of the original construction
for the formula now has a node associated with it, where node is a
simple 3-vertex graph shown in Figure 2. The intuition is as follows:
if nodes arrive before the rest of the graph, the game proceeds as in
the previous step. If some nodes arrive after other vertices, the player
Painter can save colors on the nodes themselves.

We use a binary encoding on the precolored vertices so that
Painter can identify all the nodes with only logarithmically many precolored vertices.

Removing the precoloring. We remove the remaining precolored vertices one by
one with an inductive lemma. At every step, we multiply the size of the graph by a
large constant, making sure that the sheer size of the newly added gadgets allows the
player Painter to color the entire graph efficiently even when large portions of the
construction from previous steps are revealed beforehand. This is the most technical
part of our construction and requires careful analysis.
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[4] M. M. Halldórsson. Online Coloring Known Graphs. In SODA: Proceedings of
the Tenth Annual ACM-SIAM Symposium on Discrete Algorithms (1999).
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Computational Complexity, Resource Augmentation

Bounds, and Models for Self-Suspending Real-Time Tasks∗

Jian-Jia Chen (Speaker) † Wen-Hung Huang ‡ Georg von der Brüggen §

1 Introduction

In computing systems, an execution entity (job/process/task) may suspend itself when
it has to wait for some activities to continue/finish its execution. For real-time em-
bedded systems, such self-suspending behavior has been shown to cause substantial
performance/schedulability degradation in the literature.

We consider a system of n sporadic self-suspending tasks. A sporadic task τi releases
an infinite number of jobs that arrive with the minimum inter-arrival time constraint.
A sporadic real-time task τi is characterized by its worst-case execution time Ci, its
minimum inter-arrival time (also known as period) Ti and its relative deadline Di. In
addition, each job of task τi has also a specified worst-case self-suspension time Si. If
the relative deadline Di of task τi in the task set is always equal to (no more than,
respectively) the period Ti, such a task set is called an implicit-deadline (a constrained-
deadline, respectively) task set (system).

There are two models that are widely used in the literature: dynamic and seg-
mented self-suspension (sporadic) task models. The dynamic self-suspension model
allows a job of task τi to suspend itself at any moment before it finishes as long as
the worst-case self-suspension time Si is not violated. The segmented self-suspension
model further characterizes the computation segments and suspension intervals as an
array (C1

i , S
1
i , C

2
i , S

2
i , ..., S

mi−1
i , Cmi

i ), composed of mi computation segments separated
by mi − 1 suspension intervals. A detailed review can be found in [2].

For self-suspending task systems, there are two separated problems: 1) how to design
scheduling policies to schedule the self-suspending tasks and 2) how to validate the
schedulability of a scheduling algorithm. The former is referred to as the scheduler
design problem, whilst the latter is referred to as the schedulability test problem.

2 Computational Complexity

It was shown by Ridouard et al. [7] that the scheduler design problem for the segmented
self-suspension task model is NP-hard in the strong sense. Lakshmanan and Rajkumar
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Task Model Scheduler design problem Schedulability test problem

Fixed-Priority
Scheduling

Dynamic-Priority Scheduling

Segmented
self-suspension

strongly NP-hard [7] Constrained Deadlines Implicit Deadlines

strongly
coNP-hard [1]

strongly coNP-hard
(special case is [3])

strongly coNP-hard [1]

Dynamic
self-suspension

unbounded (by a constant or by the
number of tasks) speedup factors in

any FP scheduling, EDF, EDZL, etc.
[1] unknown computational

complexity

unknown
strongly coNP-hard
(special case is [3])

unknown

Table 1: The computational complexity classes (and some speedup factors) of the sched-
uler design problem and the schedulability test problem for self-suspending tasks.

[5] proposed a pseudo-polynomial-time worst-case response time analysis, which has been
recently disproved by Nelissen et al. [6].

We have recently proved that the schedulability analysis for fixed-priority (FP) pre-
emptive scheduling even with only one segmented self-suspending task as the lowest-
priority task is coNP-hard in the strong sense when there are more than one self-
suspension interval (or equivalently more than two computation segments). The compu-
tational complexity analysis is valid for both implicit-deadline and constrained-deadline
cases, when the priority assignment is given. Our proof also shows that validating
whether there exists a feasible priority assignment is coNP-hard in the strong sense for
constrained-deadline segmented self-suspending task systems.

Table 1 summarizes the computational complexity mentioned above.

3 Lower Bounds for Dynamic Self-Suspension Algorithms

For the dynamic self-suspension task model, Huang et al. [4] developed an algorithm with
a speedup factor of 2 with respect to the optimal fixed-priority schedule. For dynamic
self-suspending task systems, the speedup factor for any FP preemptive scheduling,
compared to the optimal schedules, is not bounded by a constant if the suspension time
cannot be reduced by speeding up. This can be proved by using the following specific
task set with two implicit-deadline tasks:

• For task τ1, we set T1 = D1 = 1, S1 = 0, and C1 = B.
• For task τ2, we set T2 = D2 = 1

B2 , S2 = 1
B2 (1−B), and C2 = 1.

We implicitly assume that 0 < B ≤ 0.25 and 1/B is a positive integer. Let Tnegative be
the above task set. To prove the lower bounds of speedup factors, two steps are involved:

1. We can prove that this task set Tnegative can be in fact feasibly scheduled by a
simple heuristic algorithm when the system runs at any speed faster than or equal
to 2B(1/B−0.51/B−1 ).

2. We can also prove that this task set is not schedulable by several typical (well-
motivated) scheduling algorithms at the original speed 1.

By these, we can conclude that the speedup factor of these scheduling algorithms is at
least 1

2B ( 1/B−1
1/B−0.5). Since B can be arbitrarily small, the typical scheduling algorithms

in real-time systems, including fixed-priority (FP), earliest-deadline-first (EDF), least-
laxity-first (LLF), and earliest-deadline-zero-laxity (EDZL) scheduling algorithms.

Details can be found in [1]. How to design good schedulers with a constant speedup
factor remains as an open problem.
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4 Hybrid Self-Suspension Task Models

The majority of the literature assumes either dynamic or segmented self-suspension pat-
terns. We can also consider hybrid self-suspension task models that are more flexible
than the segmented self-suspension task model and less pessimistic than the dynamic
self-suspension task model. The hybrid self-suspension task models specify the max-
imum suspension time Si of task τi like the dynamic self-suspension model, with a
predefined number of self-suspension intervals. Instead of using (Ci,1, Ci,2, . . . , Ci,mi+1)
as the execution time pattern of the computation segments, the hybrid self-suspension
task models provide several options depending on whether the execution pattern of a
job can be known when the job arrives to the system or not:
• Pattern-oblivious: The execution pattern is unknown before the job finishes its

execution. It only assumes that the number of self-suspension intervals of a job of
task τi is at most mi − 1. However, it is possible that all different execution paths
are known offline.
• Pattern-clairvoyant : The execution pattern is known when a job arrives, i.e., each

job of task τi has its individual execution/suspension pattern and the pattern is
known at the beginning of a job.

We carefully examine different hybrid self-suspension task models. Empirically, our
revised scheduling approaches based on the literature are shown effective in terms of
the number of task sets that are schedulable. Compared to the dynamic self-suspension
task model and the segmented self-suspension task model (that enforces the execution
upper bounds on the computation segments), the hybrid self-suspension task models
can achieve different degrees of improvement, depending on the properties of the execu-
tion/suspension patterns. The hybrid self-suspension models open a new dimension for
suspension-aware real-time embedded systems. For example, in the past, the dynamic
self-suspension task model has been widely used for analyzing the multiprocessor syn-
chronization protocols. If the number of suspension intervals is small, our conclusion
shows that quantifying the execution/suspension patterns can potentially help improve
the schedulability significantly.
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Improved Efficient Approximation Schemes for Scheduling

Jobs on Identical and Uniform Machines ∗

Klaus Jansen (Speaker) † Kim-Manuel Klein ‡ José Verschae §

1 Problem Description

Minimum makespan scheduling is one of the fundamental problems in the literature on
approximation algorithms [5, 6]. In the identical machine setting the problem asks for
an assignment of a set of n jobs J to a set of m identical machines M. Each job j ∈ J
is characterized by a non-negative processing time pj ∈ Z>0. The load of a machine is
the total processing time of jobs assigned to it, and our objective is to minimize the
makespan, that is, the maximum machine load. This problem is usually denoted P ||Cmax.

2 Known Results

It is well known that P ||Cmax admits a polynomial time approximation scheme (PTAS) [7],
and there has been many subsequent works improving the running time or deriving PTAS’s
for more general settings. The first PTAS was given by Hochbaum and Shmoys [7]
and had a running time of (n/ε)O((1/ε)2) = nO((1/ε)2 log(1/ε)). This was improved to

nO((1/ε) log2(1/ε)) by Leung [12]. Subsequent articles improve further the running time. In
particular Hochbaum and Shmoys (see [8]) and Alon et al. [1, 2] obtain an efficient PTAS

(EPTAS) with running time 2(1/ε)
poly(1/ε)

+O(n log n); doubly exponentional in 1/ε. An
EPTAS is a PTAS whose running time is f(1/ε)poly(|I|) where |I| is the encoding size
of the input and f is some function. Alon et al. [1, 2] consider general techniques that
work for several objective functions, including all Lp-norm of the loads and maximizing
the minimum machine load.

The fastest known PTAS for P ||Cmax achieves a running time of 2O(1/ε2) log3(1/ε)) +
O(n log n) for (1 + ε)-approximate solutions [9]. Very recently, Chen et al. [3] showed
that, assuming the exponential time hypothesis (ETH), there is no PTAS that yields

(1 + ε)-approximate solutions for ε > 0 with running time 2(1/ε)
1−δ

+ poly(n) for any
δ > 0 [3].
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3 Configuration ILP

Given a guess T ∈ N on the optimal makespan, which can be found with binary search, the
problem reduces to deciding the existence of a packing of the jobs to m machines (or bins)
of capacity T . If we aim for a (1+ε)-approximate solution, for some ε > 0, we can assume
that all processing times are integral and T is a constant number, namely T ∈ O(1/ε2).
This can be achieved with well known rounding and scaling techniques [1, 2, 8] which
is specified also in the full version [10]. Let π1 < π2 < . . . < πd be the job sizes
appearing in the instance after rounding, and let bk denote the number of jobs of size
πk. The mentioned rounding procedure implies that the number of different job sizes
is d = O((1/ε) log(1/ε)). Hence, for large n we obtain a highly symmetric problem
where several jobs will have the same processing time. Consider the knapsack polytope
P = {c ∈ Rd

≥0 : π · c ≤ T}. A packing on one machine can be expressed as a vector

c ∈ Q = Zd ∩ P , where ck denotes the number of jobs of size πk assigned to the machine.
Elements in Q = Zd ∩ P are called configurations. Considering a variable xc ∈ Z≥0 that
decides the multiplicity of configuration c in the solution, our problem reduces to solving
the following linear integer program (ILP):

[conf − ILP]
∑

c∈Q
c · xc = b, (1)

∑

c∈Q
xc = m, (2)

xc ∈ Z≥0 for all c ∈ Q. (3)

4 New Results

In this talk we derive new insights on this ILP that help us to design faster algorithms for
P ||Cmax. We prove that P ||Cmax has an EPTAS with running time 2O((1/ε) log4(1/ε))+O(n).
Furthermore we study some more general problems. These including makespan scheduling
on uniform machines Q||Cmax, and a more general class of objective functions on
parallel machines. We show that all these problems admit a PTAS with running time
2O((1/ε) log4(1/ε)) + O(n); see also our full version [10]. Hence, our algorithms are best
possible up to polylogarithmic factors in the exponent assuming the ETH [3].

Our main technical contribution is a new structural result on the configuration-ILP.
More precisely, we show the existence of a highly symmetric and sparse optimal solution,
in which all but a constant number of machines are assigned a configuration with small
support. This structure can then be exploited by integer programming techniques [11, 13]
and dynamic programming. We believe that our structural result is of independent
interest and should find applications to other settings.
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A 2.542-Approximation for Precedence Constrained Single

Machine Scheduling with Release Dates and Total Weighted

Completion Time Objective∗

Martin Skutella†

We consider the following classical machine scheduling problem denoted by
1| rj , prec |

∑
wjCj in the standard classification scheme. We are given a set of

jobs N = {1, 2, . . . , n} and for every job j ∈ N a processing time pj ≥ 0, a release
date rj ≥ 0, and a weight wj ≥ 0. The jobs j ∈ N need to be processed during
non-overlapping time intervals of length pj , and j’s processing must not start before its
release date rj . Moreover, there are precedence constraints given by a partial order “≺”
on N where j ≺ k means that job j must be completed before job k may be started, that
is, j’s processing interval must precede k’s. We may therefore without loss of generality
assume throughout the paper that j ≺ k implies rj ≤ rk. The objective is to minimize
the total weighted completion time

∑
j∈N wjCj where Cj denotes the first point in time

at which j’s processing is completed.

Known complexity results. Even for unit job weights, the special cases of the prob-
lem without non-trivial release dates 1| prec |∑Cj (i.e., rj = 0 for all j ∈ N) or with-
out precedence constraints 1| rj |

∑
Cj are strongly NP-hard. In preemptive schedul-

ing, the processing of a job may be repeatedly interrupted and resumed at a later
point in time. In the absence of precedence constraints, the problem with unit job
weights 1| rj , pmtn |

∑
Cj can be solved in polynomial time, but for arbitrary weights

1| rj , pmtn |
∑
wjCj is strongly NP-hard. Without non-trivial release dates preemptions

are superfluous such that 1| prec, pmtn |∑Cj is equivalent to 1| prec |∑Cj and thus
strongly NP-hard.

List scheduling. Before dipping into the rich history of approximation algorithms for
these scheduling problems, we first discuss the most important algorithmic ingredient for
both heuristic and exact solutions: list scheduling. Consider a list representing a total
order on the set of jobs N , extending the given partial order “≺”. A straightforward
way to construct a feasible schedule is to process the jobs in the given order as early as
possible with respect to release dates. The resulting schedule is a list schedule.

Depending on the given list and the release dates of jobs, the machine might remain
idle when one job is completed but the next job in the list is not yet released. On
the other hand, if job preemptions are allowed, it is certainly not advisable to leave the
machine idle while another job at a later position in the list is already available (released)
and waiting. Instead, we better start this job and preempt it from the machine as soon
as the next job in the list is released. In preemptive list scheduling we process at any

∗This abstract is essentially taken from the introduction and conclusion of [15].
†martin.skutella@tu-berlin.de. Institut für Mathematik, TU Berlin, Straße des 17. Juni 136,

10623 Berlin, Germany.
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point in time the first available job in the list. The resulting preemptive schedule is
feasible (as j ≺ k implies rj ≤ rk) and is called preemptive list schedule.

Known techniques and results. There is a vast literature on approximation algo-
rithms for the various scheduling problems mentioned above. Here we only mention
those results that are particularly relevant in the context of this abstract and refer to
Chekuri and Khanna [4] for a more comprehensive overview. Various kinds of linear
programming (LP) relaxations have proved to be useful in designing approximation al-
gorithms. One of the simplest and most intuitive classes of LP relaxations is based on
completion time variables only. These LP relaxations were introduced by Queyranne [12]
and first used in the context of approximation algorithms by Schulz [13], who presents
a 2-approximation algorithm for the problem 1| prec |∑wjCj and a 3-approximation
algorithm for 1| rj , prec |

∑
wjCj ; see also Hall, Schulz, Shmoys, and Wein [9]. These

algorithms compute an optimal LP solution and then do list scheduling in order of
increasing LP completion times. Moreover, Hall et al. [9] show that preemptive list
scheduling in order of increasing LP completion times is a 2-approximation algorithm
for 1| rj , prec, pmtn |

∑
wjCj .

Phillips, Stein, and Wein [11] and Hall, Shmoys, and Wein [10] introduce the idea of
list scheduling in order of so-called α-points to convert preemptive schedules to nonpre-
emptive ones. For α ∈ (0, 1], the α-point of a job with respect to a preemptive schedule
is the first point in time when an α-fraction of the job has been completed. Goemans [7]
and Chekuri, Motwani, Natarajan, and Stein [5] show that choosing α randomly leads
to better results. In particular, Chekuri et al. [5] present an e/(e − 1)-approximation
algorithm for 1| rj |

∑
Cj by starting from an optimal preemptive schedule. Goemans [7]

and Goemans, Queyranne, Schulz, Skutella, and Wang [8] give approximation results
for the more general weighted problem 1| rj |

∑
wjCj based on a preemptive schedule

that is an optimal solution to an LP relaxation in time-indexed variables. Similarly,
Schulz and Skutella [14] give an (e+ ε)-approximation algorithm for 1| rj , prec |

∑
wjCj

for any ε > 0; see also [16, 17].
Bansal and Khot prove in a recent landmark paper [3] that there is no (2 − ε)-

approximation algorithm for 1| prec |∑wjCj , assuming a stronger version of the Unique
Games Conjecture. Ambühl, Mastrolilli, Mutsanas, and Svensson [2], based on earlier
work of Correa and Schulz [6] and Ambühl and Mastrolilli [1], prove an interesting
relation between the approximability of 1| prec |∑wjCj and the vertex cover problem

Our contribution. We present a
√
e/(
√
e− 1)-approximation algorithm for the prob-

lem 1| rj , prec |
∑
wjCj based on the following two ingredients: (i) For the problem

1| rj , prec, pmtn |
∑
wjCj we slightly strengthen the 2-approximation result of Hall et

al. [9], and show that preemptive list scheduling in order of increasing LP completion
times on a machine running at double speed yields a schedule whose cost is at most the
cost of an optimal schedule on a regular machine. (ii) Modifying the analysis of Chekuri
et al. [5] we show how to turn the preemptive schedule on the double speed machine into
a nonpreemptive schedule on a regular machine while increasing the objective function
by at most a factor of

√
e/(
√
e− 1).

Conclusion. Despite our enthusiastic yet ultimately fruitless efforts to improve this
approximation result, we feel that the new performance ratio

√
e/(
√
e− 1) is hardly

the last word on the considered scheduling problem. On the other hand, the history of
approximation algorithms for the special case 1| prec |∑wjCj and, in particular, recent
non-approximability results make it seem somewhat unlikely to achieve a performance
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ratio strictly better than 2. Therefore, and due lack of imagination of other meaningful
approximation ratios, we conclude with the following conjecture, granting an extra +ε
in the performance ratio to the release dates.

Conjecture. For any ε > 0, there is a (2 + ε)-approx. alg. for 1| rj , prec |
∑
wjCj .

References
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The General Scheduling Problem With Uniform Release

Dates Is Not APX-Hard

Antonios Antoniadis∗ Ruben Hoeksma (Speaker)† Julie Meißner ‡

José Verschae§ Andreas Wiese¶

1 Introduction

The general scheduling problem (GSP) generalizes single machine scheduling problems
with total cost objectives. That is, any single machine scheduling problem where jobs
have a cost function dependent on their completion time. In its most general setting we
define GSP as follows.

Definition 1 (General Scheduling Problem (GSP)) Given a set of jobs J , each
job j with a processing requirement pj, a release date rj, and a job-specific cost function
fj : N → N0 ∪ {∞}. Schedule the jobs on a single machine while minimizing the sum
of the jobs’ costs,

∑
fj.

The best known result for this setting is an O(log logP )-approximation in polynomial
time [1]. Noteworthy is that classical objective functions like weighted flow time and
weighted tardiness can be modeled in this setting, while even for these objective functions
no better results are known.

The best known lower bound for GSP is strong NP-hardness, which holds even for
uniform release dates (rj = 0 for all j), thus leaving a large gap in our understanding of
the complexity of the problem. In the case of uniform release dates this gap is smaller,
yet our understanding is still incomplete. When release dates are uniform, there exist
a (4 + ε)-approximation [3] and an (e + ε)-approximation [2] in polynomial and quasi-
polynomial time, respectively. In this work we nearly close the gap for the identical
release dates setting by showing the following theorem.

Theorem 2 GSP with identical release dates is not APX-hard, unless SAT ⊆
DTIME(2poly(logn)).

The proof for Theorem 2 consists of a quasi-polynomial time approximation scheme
(QPTAS)1 for GSP with identical release dates. The existence of this QPTAS directly
implies the theorem.

∗antoniad@cs.uni-bonn.de. Department of Computer Science, University of Bonn, Germany.
†rhoeksma@dim.uchile.cl. Center for Mathematical Modeling, Universidad de Chile.
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1A QPTAS is an approximation scheme running in O(2poly(logn)) time, where n is the input size.

83



Job Set

Solution 1

Solution 2
tMt1 t2

(a) Picking the second part of the top job rules out
Solution 1, while not picking it rules out Solution
2. Note that both solutions have the same total
cost, yet are incomparable since on t1 and t2 they
cover different heights.

tM

(b) The bold curve denotes the height profile of job
parts that cover tM and are selected by the optimal
solution. The step function underneath shows an un-
derestimating profile that approximates the former
curve. The subprofile estimates the capacity covered
by job parts such that the corresponding job has a
part that covers tM and whose end point lies at the
third step of the former step function.

Figure 1

2 UFP cover and generalized UFP cover

For identical release dates, no solution of GSP can benefit from preemption of jobs or
leaving idle time in the schedule. Therefore, it is a pure sequencing problem. Bansal
and Pruhs [1] where first to reduce GSP to a covering problem. Then, Höhn et al. [2]
used a reduction to the Unsplittable Flow on a Path (UFP)-cover problem together with
a QPTAS for that problem to show an (e + ε)-approximation for GSP with identical
release dates. We use a reduction to a more general version of the UFP cover problem
that maintains the approximation factor between the two problems.

Definition 3 (Generalized UFP-cover) Given are a path P , with for each edge e ∈
P a demand De, and a set of jobs J , with for every job j ∈ J a height, pj. Each job

j consists of kj parts, with associated paths (e0j , . . . , e
1
j ), (e

1
j , . . . , e

2
j ), . . . , (e

kj−1
j , . . . , e

kj
j )

and costs c1j ≤ . . . ≤ c
kj
j , where cij denotes the cost for selecting parts 1, . . . , i of job j .

The objective is to choose a set of jobs, with for each of those jobs a prefix of parts, such
that in each edge e ∈ P the total height of the jobs of which one of their chosen parts
covers e is at least De and such that the total cost of the parts is minimized.

When kj = 1 for all jobs j, this definition gives us exactly the UFP-cover prob-
lem. While for the UFP-cover problem the reduction from GSP does not preserve the
approximation ratio, for Generalized UFP-cover it does.

Lemma 4 For any instance of GSP with identical release dates in which each cost func-
tion attains only polynomially many different values, we can construct in polynomial time
an instance of generalized UFP-cover such that approximations are preserved, i.e., for
any α ≥ 1 an α-approximate solution for the generalized UFP-cover instance can be
transformed in polynomial time to an α-approximate solution for the GSP instance.

3 QPTAS for GSP with identical release dates

Our QPTAS for Generalalized UFP-cover with identical release dates is based on the
QPTAS for UFP-cover by Höhn et al. [2]. The basic idea is to group the jobs by cost and
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size and then guess an underestimating profile of the demand covered by the selected set
of jobs that cover the middle edge, tM , in the optimal solution. The guessed profile is an
increasing step function until tM and a decreasing step function after tM . The profile is
such that the underestimation of the demand covered (deficit) in each edge is bounded
by a constant fraction of the demand covered in tM . A set of jobs is then chosen such
that the underestimating profile is covered. By appending that set of jobs with another
set of jobs that covers the deficit, this ensures that the chosen jobs cover at least as
much as the set selected in the optimal solution.

In the UFP-cover case, where each job only has a single part, this divides the problem
into two independent subproblems on the left and right of tM . Which can be treated in
exactly the same way. In the Generalized UFP-cover case, this is not so straightforward.
Figure 1a illustrates that. When we guess the underestimating profile, we cannot just
use profiles per part of the jobs, since the choice would greatly influence the options in
the left and right subproblems.

To overcome this issue, we go beyond the single level profile and guess subprofiles
for all the parts to the right of tM . This results in different classes of jobs, where jobs in
one class have similar height, cost and covering paths for each of their parts (to the right
of tM ). See Figure 1b for an impression of these profiles for two parts. The subprofiles
essentially consist of guessing the number of jobs that we select in each of the groups
that was defined. We show that any such selection of jobs suffices and therefore, that
we can delay the actual decision.

Delaying the decision is useful since we can only guess the jobs that actually cover
tM in the final solution. However, the jobs of which the part that covers tM is not
selected may still be needed in the left subproblem. Since we cannot profile these jobs,
we delay the decision and first solve the left subproblem with the added information
that the solution should fit the profiling of the jobs covering tM . This corresponds to
passing information about this set of jobs, thus subdividing the set that covers tM into
smaller subgroups in every recursive step of the algorithm. In general, this could grow
exponentially. However, we show that here this is not the case.

The result is a depth-first recursion that starts on the left of the path P and moves
to the right.
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Models and Algorithms for a Partition Problem Arising in

Warehousing

Dominik Kress ∗ Nils Boysen † Erwin Pesch (Speaker) ‡

1 Introduction

The storage assignment problem is among the most essential decision problems to be
solved in any warehouse. Each stock keeping unit (SKU) is to be assigned a storage
position from where it is to be retrieved during order picking. In many warehouses,
the detailed slotting, i.e., the decision on the specific shelf each SKU is stored in, is
less of an issue, but the problem rather reduces to a partition problem; SKUs are to be
jointly stored in one area or group, so that picking-orders can efficiently and conveniently
be retrieved without having to access too many groups. In this context, we treat the
following basic partition problem, which we denote as the SKU partition problem (see
our paper [4], which is the foundation of this extended abstract): Consider a given set
of SKUs, which are to be partitioned into groups of equal size, and a deterministic set
of (weighted) picking-orders each defining a subset of SKUs demanded by an order’s
customer. Depending on the partitioning of items, orders require different numbers of
groups to be accessed during order picking. We refer to these numbers as the orders’
group numbers. Our objective is to find a partitioning of SKUs that minimizes the
weighted sum of group numbers over all picking-orders.

2 An application

In general, partition problems have plenty potential applications in a wide range of
areas. We, however, focus on warehousing and consider the assignment of storage space
to SKUs in carousel racks as an application of the SKU partition problem (see Figure
1).

A carousel is a special kind of automated storage and retrieval system, in which
linked shelves or drawers are turned in an oval closed loop. Required SKUs are turned
towards the front and are accessed (typically by a human order picker) via a window-like
pick face. These parts-to-picker systems either rotate horizontally or vertically and they
are typically applied to store small or medium sized items in a space-efficient, yet easy
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Figure 1: A carousel rack

to access manner. A recent literature survey on carousels is provided in [6]. Depending
on the current position of the loop, the picker can conveniently access all active shelves
that are currently displayed in the pick face. A major source for picker idle time is the
time it takes to rotate the carousel in order to change the set of shelves presented in
the pick face. If we think of a subset of SKUs that can simultaneously be accessed as a
group, then our basic partition problem can directly be applied to determine groups that
minimize the number of carousel moves when having to retrieve a given order set. Order
weights can be applied to indicate the frequency with which each order (presumably)
occurs.

3 Complexity, models and algorithms

In [4], we prove that the SKU partition problem is NP-hard in the strong sense by
reduction from the bisection problem. Furthermore, we present two MIP models. While
one of them is rather intuitive, the other formulation is based on a well-known model
formulation for the clique partitioning problem. Concerning this latter problem, it is
well known that ejection chain heuristics, which are based on ideas presented in [3] and
[7], perform well [2, 1]. This motivated us to implement an ejection chain based heuristic
for the SKU partition problem. Furthermore, we develop a branch and bound procedure
that applies constraint propagation techniques.

In a computational study we show that the ejection chain heuristic tends to provide
high-quality solutions within a very short time. Furthermore, with respect to applying
the branch and bound method and solving the SKU partition problem with CPLEX
based on the different model formulations, we show that CPLEX is well suited for small
to medium sized models. When the number of groups is relatively large, the clique
partitioning based model formulation performs best. For large instances, the branch
and bound procedure results in the best upper bounds on the objective function value
and the smallest optimality gaps.

With respect to the practical impact of our research, we compare the results of
our group-based perspective with a classical organ pipe arrangement and a random
assignment of SKUs to storage positions in carousel racks. The organ pipe arrangement
(see, for example, [5]) first sorts the SKUs in nonincreasing order of their overall demand.
Then, based on this ordering, the SKUs are assigned to the shelves of the carousel
in groups of fixed size. The first group (high level of demand) is assigned to shelf
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h = d(k + 1)/2e, where k denotes the total number of shelves. The next groups are
assigned to shelves h−1, h+1, h−2 and so forth. Our results show that our group-based
perspective results in substantially smaller average picker idle times when compared to
this classical approach as well as a random assignment of SKUs to the shelves.
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A New Approach to Predicting More Reliable Project

Runtimes via Probabilistic Model Checking

Ulrich Vogl (Speaker) ∗ Markus Siegle †

1 Introduction

For more than five decades, efforts of calculating exact probabilistic quantiles for ar-
bitrary project runtimes have not been successful due to the tremendous computation
requirements, paired with hard restrictions on the available computation power. The
methods established today are PERT (Programming Evaluation and Review Technique,
[1, p.303-365]) and CCPM (Critical Chain Project Management, [2]). They make sim-
plifying assumptions by focusing on the critical path (PERT) or estimating appropriate
buffers (CCPM). In view of this, and since today’s machines offer an increased com-
putation power, we have developed a new approach: For the calculation of more exact
quantiles or – reversely – of the resulting buffer sizes, we combine the capabilities of
classical reduction techniques for series-parallel structures with the capabilities of prob-
abilistic model checking (pMC) [4]. In order to avoid the state space explosion problem,
we propose a heuristics algorithm.

2 Problem description and algorithm

The goal is to approximate the runtime distribution of a project task graph which is
given as a directed acyclic graph (DAG) with one source and one sink node. Each node
(task) is equipped with a stochastic execution time, given as a continuous probability
distribution. Our algorithm can be outlined as follows:

• The idea is to reduce the original DAG in a stepwise fashion until the remaining
graph consists of only one node whose runtime distribution approximates that of
the original overall graph.

• We seek to find subgraphs which can be reduced to a single node by (exact) serial
or parallel reduction, as described for example in [3]. Serial reduction means that
two serially connected nodes are reduced to a single node whose distribution is the
convolution of the two operand distributions. Parallel reduction means that two or
more “parallel” nodes are reduced to a single node which is distributed according
to the maximum of the operand runtimes.

• When no further series-parallel reduction is possible, we identify the starting and
end points of a so-called complex cluster (a generally structured subgraph). We
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use the concept of syncpoint (see below) to define such clusters. The cluster is
then reduced by a complex reduction to a single node. This reduction uses pMC.

• In order to avoid state space explosion, it is necessary to limit the size of the graph
to be fed into pMC. Therefore the clusters analysed by pMC should be as small as
possible. A related challenge consists of finding an appropriate (heuristic) fitting
for each source distribution, because pMC tools (such as PRISM [5]) usually only
accept exponential distributions.

• It is an interesting side effect that already one complex reduction step can often
eliminate a local complexity hotspot and thereby enable further series-parallel
reduction steps.

The search for appropriate starting points for cutting out clusters to be reduced can
be directed by focusing on particular edge subsets: We call a set E of edges a syncpoint,
if and only if for the node set P consisting of the starting points of E and for the node
set S consisting of the end points of E the following holds:

1. Each edge from P to S is in E .

2. All nodes in P have the same set of ’common’ successor nodes

3. All nodes in S have the same set of ’common’ predecessor nodes.

If only condition (2) with |P | > 1 or condition (3) with |S| > 1 holds, we use the concept
of backward or forward half syncpoint (BHSP or FHSP).

(a) full, FH(blue), BH(green) SPs (b) PERT calculated vs. precise quantiles

Figure 1: (a) example project graph and (b) computed runtime distributions

3 Practical implementation of the reduction steps

We use a numerical implementation of the series-parallel reduction as described in [3,
p.167-226]. Furthermore, for each complex reduction we have to find an appropriate
pMC model by fitting the given source distributions. For the following example we use
the probabilistic Model Checker PRISM [5]. To represent each given source distribution
of a complex cluster, we use the convolution of two Erlang distributions Erl(λ1, k1) ∗
Erl(λ2, k2). As long as the coefficient of variation is not greater than 1, the fitting
delivers matching first two moments as well as a minimized error at the 3rd moment.

Consider the example graph in Fig. 1(a), where all nodes possess an Erlang distribu-
tion (see individual λ/k values at the nodes). Fig. 1 (b) shows the density of the PERT
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approach (critical path 0-1-4-7-8 only) as well as the exact target distribution of the
entire graph (calculated by our method). It shows how substantial the deviation caused
by the PERT-based simplification is: a confidence level of 50% is reported as 90%!

But what about CCPM? Table 1 describes all six possible paths through the graph,
each equipped with an associated (feeding) buffer. The Cut & Paste Method (C&PM)
[2] delivers the better quantile (84.23% at 72.53 time units), although even there remains
a remarkable distance to the desired 90% quantile (appearing at 77.47 time units).
Applying the Root Square Error Method (RSEM) [6, p.25ff] we get a still worse result
(80.13% quantile at 70.00 time units).

Table 1: CCPM runtimes: path-wise (+buffers), maximum, corr. precise quantile

0-2-5-8 0-1-5-8 0-1-4-7-8 0-1-4-6-8 0-1-3-7-8 0-1-3-6-8 maximum quantile

C&PM 44.48 45.80 48.35 47.03 47.03 45.71 72.53 84.23%
feed.buff. +22.24 +22.90 +24.18 +23.52 +23.52 +22.86

RSEM 44.48 45.80 48.35 47.03 47.03 45.71 70.00 80.13%
feed.buff. +25.52 +23.47 +10.15 +14.27 +14.27 +17.44

4 Summary and future work

The presented idea offers a remarkable chance to improve the accurancy of established
project planning methods. Estimates of the probable runtime – even for complex
structures – can be calculated more precisely and also – compared to the customary
simulation-based approaches – with manageable computation effort. One of the cur-
rently leading management methods, CCPM, can be improved by the combined use of
exact calculations and heuristic approximations: For a given project schedule, one ob-
tains a handy calculation of the time-to-finish distribution. In the opposite direction –
given a desired project-finalization quantile – one gets a new, better founded calculation
method for the CCPM-specific buffer dimensioning. This holds even if the scheduling
complexity of the CCPM is increased by an additional calculus regarding the resources-
or skill-dependencies (already envisaged in our work plan). Eventually we will use the
presented method to solve resource conflicts of the kind “bad multitasking” [2] by taking
or hedging a founded decision for a particular prioritization.
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Box Placement as Time Dependent Scheduling

To Reduce Automotive Assembly Line Worker Walk Times

Helmut Sedding ∗

1 Introduction and related work

Henry Ford established moving assembly lines in 1913 for a cost efficient car production
in high volumes [5]. The product is moved at a fixed pace on the assembly line, which
is divided into several stations. The workload at each station must adhere to a global
cycle time. Assigning tasks to stations is well-known as assembly line balancing. For a
recent survey on this NP hard optimization problem, see Battäıa and Dolgui [1]. As the
line side space at assembly stations is very scarce [3], Bautista and Pereira [2] introduce
an extended model, ensuring space requirements are met at each station.

In this work, we focus on increasing the local productivity of a station with a single
worker. This may allow to reduce the cycle time or, at least, to better balance the
assembly line. Specifically, we focus on shortening the worker’s walk times. This non-
productive time can contribute to the workload by a significant amount [3]. With the
same intention, Scholl et al. [8] optimize walk times between working points and consec-
utive products. This setting is similar to a scheduling problem with sequence dependent
setup times. We, on the other hand, focus on the walks to fetch material and return
to the product. Here, walk time additionally depends on the product position, which is
time-dependent. This time-dependency adds a further layer of complexity: by changing
the duration of tasks at the beginning of a worker’s schedule, all following tasks change
their position, and thus their walk time. As a consequence, they need to be reoptimized.
This contrasts with classical scheduling models, where, e.g., swapping two adjacent jobs
influence the objective function, but no other jobs. On the subject of time-dependent
scheduling, literature is comprehensively reviewed by Gawiejnowicz [4]. The specific
problem of optimizing the sequence of a worker’s tasks to minimize walk times is treated
in Sedding and Jaehn [9], and Jaehn and Sedding [6]. They introduce a model, analyze
the complexity, prove several structural properties, and deduct both exact and heuristic
algorithms for solving the problem.

An earlier planning step for the assembly line decides on the line side placement of
boxes. In practice, this planning step is largely done by placing full-size card boxes.
However, this gives only a limited view on the consequences. In recent years, dedicated
software planning tools introduce digital planning assistance for placing the boxes by
showing resulting worker paths. However, the placement of boxes is largely manual. An
automated placement of boxes is still in its infancy. In the literature, Klampfl et al.
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[7] provide the first operations research view on this problem, with tests on five tasks
and boxes. In this work, we introduce a novel model, test a MIP formulation, exact
algorithms, and heuristics for this problem.

2 Modeling

First, we provide a definition of the problem setting. We assume that the worker only
works at one position at the car, e.g., at the left door to install several parts. Right
before each assembly task, the worker needs to pick the respective material from its
box, alongside the assembly line. In practice, smaller boxes are placed in shelves with a
predetermined number of levels (usually, three or four). We simplify this strategy in our
model by placing all boxes on one level. For this, we divide each shelf-placed box width
by the number of shelf levels. A solution can afterwards be transformed by using the
obtained positions as a guidance point for stacking the boxes in two dimensions. This
simplification allows us to tackle the box placement as a one dimensional problem, very
similar to a scheduling problem. We also assume that the space at the station is scarce.
Hence, it is not necessary to insert gaps between boxes.

Each worker is given a fixed list of tasks 1, . . . , n, in set J . Starting at time zero, this
list is to be done as early as possible for each product. Consider task j ∈ J . Its material is
provided in a box of given width Wj . It is placed at a position πj , resulting from the box
sequence, which is gapless and without overlaps. To optimize this sequence, we regard
the box placement as a single machine scheduling problem (of boxes). The objective is to
minimize the makespan of the assembly tasks. The processing time of task j is comprised
of the variable walk time, and a fixed assembly time of length lj . The walk time to the
box depends on the product position. The product moves with a constant speed along
the straight assembly line. Thus, the product position proportionally translates to the
start time tj of the job. In each direction, the walk time grows proportional by distance,
by factor a if the box is downstream, and b if the box is upstream. Both factors are in
interval (0, 1), as we measure space in time units of the assembly line movement. Then,
the objective is to find a box sequence that minimizes the last job’s completion time.

3 Solution procedures

To give way for obtaining results with a generic solver, and to clarify the described
problem setting, we introduce a suiting MIP formulation. Parameters are the walk time
factors a, b ∈ (0, 1), and, for each job j = 1, . . . , n, length lj and a box of width Wj :

min Cn subject to: (1)

0 = C0, and Cj−1 + ωj + lj = Cj for all j = 1, . . . , n (2)

−aδj ≤ ωj , and bδj ≤ ωj for all j = 1, . . . , n (3)

Cj−1 −
∑

k=1,...,n

xj,kπ[k] = δj for all j = 1, . . . , n (4)

0 = π[1], and π[k−1] +
∑

j=1,...,n

xj,k−1Wj = π[k] for all j = 2, . . . , n (5)

∑

j=1,...,n

xj,k = 1 for all k = 1, . . . , n (6)

93



∑

k=1,...,n

xj,k = 1 for all j = 1, . . . , n (7)

xj,k ∈ {0, 1} for all j, k = 1, . . . , n (8)

This formulation allows to set the box sequence by deciding on the binary positional
assignment variables xj,k. The resulting box position for a job j is

∑
k=1,...,n xj,kπ[k].

We conducted tests on solving real world instances (n ≥ 30) with this model in
Gurobi 7.0. However, only smaller instances are solved in adequate time. This neces-
sitates the development of faster algorithms. We analyze the problem structurally and
show several combinatorial properties of special cases. These allow us to form several
lower bounds, for use in a branch and bound algorithm. Moreover, we propose a domi-
nance rule that eliminates nodes which are guaranteed to be worse than other branches.
The preliminary numerical results already show that the newly developed algorithm, im-
plemented in C++, delivers promising results by computing exact solutions much faster
than Gurobi’s MIP solver.
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Failures

Marco Bender ∗ Clemens Thielen † Stephan Westphal (Speaker) ‡

1 Introduction

We consider the problem of scheduling intervals on m identical machines. An interval i
is given by a release date ri ≥ 0 and a processing requirement (or length) pi > 0. If an
interval i is accepted, it must be assigned to start immediately at time ri on a machine
that is currently not occupied. It is then processed for pi time units, i.e., it finishes at
time ri + pi. The goal is to maximize the number of accepted intervals subject to the
constraint that no two intervals assigned to the same machine overlap.

In our online setting, we are initially given a set I = {1, . . . , n} of intervals with
release dates and processing requirements and the information that up to k of these
intervals might fail, i.e., they cannot be accepted. We assume throughout the paper
that the intervals I = {1, . . . , n} are sorted in non-decreasing order of release dates
and, for identical release dates, in non-increasing order of lengths, where we break ties
arbitrarily. We denote this ordering of the intervals by π. Hence, an instance σ = (I, F )
of the problem is defined by the set I of intervals and a subset F ⊆ I of failing intervals
with |F | ≤ k. An online algorithm initially knows the set I of intervals and the upper
bound k on the number of failures, but only learns whether an interval i fails at the
time ri when it is supposed to start. For each non-failing interval i, the online algorithm
has to decide immediately at time ri whether to accept it and, if it accepts i, to which
machine the interval should be assigned. Once a non-failing interval is accepted on some
machine, it may not be aborted, preempted, or moved to another machine. We refer to
this problem as the online interval scheduling problem with at most k failures and write
for short k-ois.

An offline algorithm knows the complete set F of failing intervals in advance and can
compute an optimal solution for the remaining intervals in I \ F .

We measure the quality of online algorithms for k-ois by means of competitive anal-
ysis (cf. [1]). For an instance σ, the profit (number of accepted intervals) obtained by
an online algorithm alg is denoted by alg(σ), and opt(σ) denotes the profit of an
optimal (offline) solution for instance σ. For c ≥ 1, a deterministic online algorithm
alg is called c-competitive for k-ois if opt(σ) ≤ c · alg(σ) for every instance σ. Anal-
ogously, if alg is a randomized online algorithm, it is called c-competitive (against an
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oblivious adversary) if opt(σ) ≤ c · E [alg(σ)] for every instance σ, where E [alg(σ)]
denotes the expected value of the profit obtained by alg on instance σ with respect to
the probability distribution defining alg.

2 Deterministic Online Algorithms

2.1 A Single Machine

We start by providing a lower bound on the competitive ratio of deterministic online
algorithms for the case of a single machine.

Theorem 1 No deterministic online algorithm for k-ois on a single machine (m = 1)
can achieve a competitive ratio smaller than max{2, k}.

Definition 2 We say that an interval i′ is π-contained in interval i if i < i′ (so, in
particular, ri ≤ ri′) and ri + pi ≥ ri′ + pi′, i.e., if i is before i′ in the ordering π and
[ri′ , ri′ + pi′ ] ⊆ [ri, ri + pi]. In this case, we also use the notation i′ ⊆π i.

We say that an interval i′ sticks out of an interval i if ri < ri′ < ri + pi and
ri′ + pi′ > ri + pi.

In the following, we consider the algorithm count for a single machine that accepts
a non-failing interval i if the machine is idle at its release date ri, and if at least one of
the intervals i + 1, . . . , n sticks out of i and i π-contains at most max{k − l(i) − 1, 0}
intervals or none of the intervals i+1, . . . , n stick out of i and i π-contains at most k−l(i)
intervals. Here, l(i) denotes the number of failing intervals in 1, . . . , i− 1.

In the analysis for the theorems below, we make use of the following argument: If an
interval i that is accepted by opt π-contains another non-failing interval i′ ⊆π i, then
opt can simply accept interval i′ instead yielding the same number of accepted intervals.
This argument helps to analyze the competitive ratio of count and show that it is best
possible:

Theorem 3 count is max{2, k}-competitive for k-ois on a single machine (m = 1).

2.2 Multiple Machines

In this section, we present the algorithm multi for multiple machines. Intuitively speak-
ing, multi runs m copies of (a slightly modified version of) count, one for each machine.
If an interval i is released at time ri, it is given to the first machine. If i is accepted and
assigned to machine 1, the processing of interval i is terminated. Otherwise, interval i is
rejected on the first machine and we pass it on to machine 2. The procedure is continued
until the interval is either accepted on some machine or rejected on all of them.

Theorem 4 multi is (4 + k−3
m )-competitive for k-ois on m ≥ 2 machines.

For multiple machines, we are able to establish the following lower bound for deter-
ministic algorithms:

Theorem 5 No deterministic online algorithm for k-ois on m machines can be better
than Ω( m

√
k)-competitive.
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3 Randomized Online Algorithms

We now turn to randomized algorithms and establish the following lower bound by
applying Yao’s Principle:

Theorem 6 No randomized online algorithm for k-ois on m machines can be better
than Ω (log(k/m))-competitive.

3.1 A Randomized Algorithm for Laminar Intervals on a Single Ma-
chine

The proof of Theorem 6 uses a special structure for the intervals: The considered set of
intervals is laminar, i.e., for every pair of intervals, it holds that the intervals are either
disjoint or one of them is contained in the other.

We construct a randomized (log(k+ 2))-competitive algorithm for laminar instances
of k-ois on a single machine. This competitiveness almost matches the lower bound for
randomized algorithms shown in Theorem 6 (which holds even for laminar instances).

Theorem 7 There exists a (log(k + 2))-competitive algorithm for k-ois on a single
machine (m = 1) when the set of intervals is laminar.

3.2 Extension of the Algorithm to Multiple Machines

We extend the idea of the randomized algorithm for one machine to m ≥ 2 machines
and prove this way that:

Theorem 8 There exists a randomized (log(k+2))-competitive algorithm for k-ois when
the set of intervals is laminar.
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Scheduling in Advanced OFDMA Wireless Networks: An

Algorithmic Perspective

Reuven Cohen (Speaker) ∗ Guy Grebla †

1 Introduction

One of the most important entities in every cellular network is the scheduler logic.
This logic needs to determine in real-time which of the data packets awaiting wireless
transmission will use the limited spectrum. In modern cellular networks, which use
bandwidth of 10Mhz, 20Mhz or even more, the scheduler must be very efficient, because
it is invoked hundreds of times every second, and it needs to choose from thousands of
waiting data packets.

To meet the exponentially growing demand for mobile data, modern (OFDMA) cel-
lular technologies such as LTE-Advanced require not only additional spectrum but also
optimized transmission using the most sophisticated wireless technologies. These tech-
nologies include adaptive modulation and coding, carrier aggregation, Fractional Fre-
quency Reuse (FFR), enhanced Inter-Cell Interference Coordination (eICIC), Coordi-
nated Multipoint (CoMP) operation, cell sectorization, and wireless relays.

This paper studies the problem of OFDMA scheduling from the algorithmic perspec-
tive in a cellular network with some of the most advanced wireless technologies. The
goal is to see how the inclusion of each technology affects each scheduling problem and
requires a more sophisticated scheduling algorithm.

2 The Basic Model

In the basic model, each BS has a single omni-directional antenna that transmits packets
to the users in its cell. The frame is divided into 10 1ms subframes, and the scheduler
needs to make a scheduling decision for every 1ms subframe. A subframe is divided
into physical resource blocks. A subcarrier contains 14 OFDMA in each 0.5ms time
slot. Each resource block consists of 12 subcarriers in a 0.5ms time slot. Therefore,
each subframe contains 12 · 14 = 168 OFDMA symbols. The bit capacity of a symbol
depends on the MCS (modulation and coding scheme) of the packet. For example, with
a modulation of 16-QAM and a coding rate of 3/4, each symbol accommodates 4·3/4 = 3
bits. The minimum allocation unit is referred to as a scheduled block, which consists of
2 physical resource blocks transmitted one after the other during a 1ms subframe. The
number of scheduled blocks in a subframe depends on the system capacity: it is 100 in
a 20MHz system, for example.
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The BS scheduler needs to make real-time scheduling decisions once every 1ms sub-
frame. These decisions must take into account many factors, such as the signal-to-
interference-plus-noise ratio (SINR) of every user in the cell, the priority of every user,
QoS considerations for each packet, and so forth. In keeping with the concepts proposed
in [2], the scheduler is assumed to use a utility function that assigns a utility to the
transmission of every waiting data packet in the next 1ms subframe.

Before a decision is made whether or not to transmit a given packet in the next
subframe, the packet is associated with a weight. The weight indicates the number
of scheduled blocks (or, equivalently, the number of OFDMA symbols) required for
transmitting the packet by the BS. The weight is determined according to the length
of the packet and according to the MCS chosen by the scheduler for transmission. A
transmission using a more robust MCS, for instance, requires more scheduled blocks
than a transmission using a less robust MCS.

Both the utility and the weight of each transmission depend on the MCS. Thus, each
MCS can be represented by a {utility, weight} pair. The basic model assumes that each
packet has a target success probability and is transmitted using the most efficient MCS
that guarantees this success probability. For example, if the target success probability is
0.98, and the most efficient MCS that guarantees it requires 3.4 scheduled blocks, then
the weight of transmitting this packet is d3.4e = 4.

It follows that in the basic model every packet can be transmitted using only one
MCS, referred to as the “default MCS,” and it is associated with only one {utility,
weight} pair. In such a case, determining which packets will be transmitted in the next
subframe is equivalent to finding the set of data packets whose aggregate weight is not
larger than the number of scheduled blocks in a subframe and whose aggregate utility
is maximum. This, in turn, is equivalent to the well-known NP-complete Knapsack
problem.

When the scheduler determines not only which packets will be transmitted but also
which MCS will be used for each, the scheduling problem is equivalent to the Multiple
Choice Knapsack Problem (MCKP) [1]. MCKP is a generalization of Knapsack, and
it is therefore also NP-complete. Like Knapsack, it also has very efficient algorithms:
a 2-approximation that works in linear time, and an optimal algorithm that works in
pseudo-polynomial time.

3 The Impact of Cell Sectorization on Scheduling

Inter-cell interference is a dominating factor in the performance of cellular networks. If
neighboring BSs transmit using the same set of frequencies at the same time, their users
will experience bad SINR and the network will perform poorly even if the best scheduler
is used. The easiest way to cope with such interference is to divide the available set of
frequencies into three subsets (“colors”) and to assign a color to each cell such that two
neighboring cells will not have the same color. In other words, a big knapsack is di-
vided into multiple independent small knapsacks. Then, the same scheduling algorithms
described above can be used, because each BS has to fill its own (small) knapsack, in-
dependently of the other BSs. Since this solution decreases the number of scheduling
blocks that can be assigned by each scheduler by a factor of 3, more efficient solutions
are desired, two of which are cell sectorization and FFR (Fractional Frequency Reuse).
These solutions can be used independently, but they are very often combined.
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The scheduling problem in each cell can be addressed by running an independent
scheduler in each sector. In this case, each sector is viewed as an independent BS
with its own antenna and scheduling logic. The scheduling logic has its own knapsack
(red, green or blue), and it runs the same algorithms discussed earlier. However, a
more efficient approach is that one scheduling logic (“a joint scheduler”) performs the
scheduling decisions for the three sectors together.

The joint scheduler has to determine not only which packets to transmit in every
subframe using which MCS, but also which of the three antennas should be used to
transmit each scheduled packet. The optimization problem that such a scheduler needs
to solve is no longer Knapsack or MCKP. For simplicity, consider first the case where only
one MCS can be used for the transmission to each user from each antenna. This is the
most efficient MCS that guarantees the target success probability, referred to earlier as
the default MCS. Since the SINR experienced by the user from each antenna is different,
the default MCS is different for each antenna. In other words, for each waiting packet,
the joint scheduler needs to decide whether to transmit the packet to the target user
using the red antenna and MCS(red), the blue antenna and MCS(blue), or the green
antenna and MCS(green). This multi-knapsack problem is known as GAP (Generalized
Assignment Problem).

Next, consider a joint scheduler that can also make a dynamic selection of the MCS
for each packet. For every 1ms subframe, such a scheduler needs to decide which packets
to transmit by each antenna and using which MCS. This scheduler has more flexibility
than a scheduler that uses the default MCS for each packet, and it is therefore likely
to obtain better performance. The combination of GAP and MCKP is a relatively new
optimization problem, referred to as MC-GAP (Multiple Choice GAP) [1], and defined
as follows:
Instance: Same as in GAP, but each item si has multiple configurations (MCSs) to
choose from. For each item si, a configuration c and a knapsack j, a utility pcj(si) and
a weight wc

j(si) are given.
Objective Determine which items will be selected for each knapsack and using which
configuration such that each item is chosen at most once, the aggregate weight on each
knapsack does not exceed its capacity, and the aggregate utility is maximized.

The relationship between GAP and MC-GAP is similar to the relationship between
Knapsack and MCKP. In particular, [1] shows that any α-approximation algorithm for
MCKP can be transformed into a (1 + α)-approximation algorithm for MC-GAP. This
implies that at least from the algorithmic perspective, there is no performance penalty
for giving the scheduler more freedom by using MC-GAP instead of GAP.
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1 Introduction

Most modern multiprocessor real-time operating systems offer the possibility to restrict
task migration with affinity masks, which specify on a per-task basis on which processors
a task may be scheduled. The usefulness of processor affinities in several contexts such
as application performance, fault tolerance or security is well-documented [5, 6].

We are given a set of n sporadic tasks τ1, τ2, . . . , τn; each task gives rise to a poten-
tially infinite sequence of invocations (or jobs); each job of a task may arrive at any time
once a minimum inter-arrival time has elapsed since the arrival of the previous job of
the same task, requires a processing time and has to be completed before its deadline.

We assume priotities among tasks/jobs. Namely, priority assignment policies used
in real-time scheduling can be classified as:
- fixed priority (FP): each task has a single fixed priority applied to all of its jobs;
- job-level fixed priority (JLFP): jobs of a task may have different priorities, but each
job has a single static priority (an example of this is Earliest Deadline First (EDF));
- job-level dynamic priority (JLDP): a single job may have different priorities at different
times, as for example in Least Laxity First (LLF) scheduling.

The problem of scheduling real-time workloads with arbitrary processor affinities
(APAs) has been considered [2, 4]. To avoid schedulability losses due to overly simple
implementations of processor affinities, two notions of scheduling with arbitrary proces-
sor affinities, weak and strong APA scheduling, have been identified in prior work [4].
Commonly used schedulers, such as Linux’s push-and-pull scheduler, implement only
weak APA scheduling. However, it has been demonstrated that strong APA scheduling
provides improved schedulability, and that it can be realized by leveraging the concept
of task shifting, i.e., by allowing higher-priority tasks to be moved among processors in
order to make room for lower-priority tasks that are limited by affinity constraints.

Previous work has shown that strong APA scheduling can be implemented with a
runtime cost of O(m2) per task arrival and O(mn) per task departure, where m is the
number of processors and n is the number of tasks [4]. The second bound could be large
when there are many tasks. We remark that it might be difficult to improve these bounds
in general, due to the combinatorial structure of the underlying matching problem.
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We observe that in many practical scenarios affinity masks are not at all arbitrary;
rather, they often follow a hierarchical structure, since affinity masks commonly mirror
the underlying hardware topology. For example, some particular cache-sensitive, high-
frequency tasks may be partitioned to a specific processor to ensure L1-cache affinity,
whereas other tasks may be restricted to a subset of cores that share an L3 cache, while
others yet may be assigned a global affinity mask to optimize their average-case response
times. We formalize this notion of hierarchical affinities by requiring that affinity masks
follow a laminar set structure, that is, given any two affinity masks α and β, either α
is a subset of β, or vice versa, or the two sets of processors are disjoint. This definition
reflects the tree-like structure of the memory hierarchy.

2 The model

We are given a set of n sporadic tasks τ = {T1, T2, . . . , Tn} to be scheduled on a set
of m processors π = {Π1, Π2, . . .,Πm}. Each task Ti = (ci, di, pi) is characterized by a
worst-case execution time ci, a relative deadline di, and a minimum inter-arrival time or
period pi. We assume that ci, di, and pi are integers and that the tasks have constrained
deadlines, that is, di ≤ pi. The extension of the sporadic task model considered here
(proposed in [2, 4]) associates with each task Ti ∈ τ a processor affinity mask α(Ti) ⊆ π
that is the set of processors on which the jobs of Ti are allowed to be scheduled. We
abbreviate α(Ti) as αi. We assume that the family of affinity masks is hierarchical (or
laminar), that is, for each i, k = 1, . . . , n, either αi ⊆ αk or αk ⊆ αi or αi ∩αk = ∅. The
level of an affinity mask α is the number of distinct affinity masks β such that β ⊆ α.
The height h of a task system is the maximum level among all the affinity masks of the
task system. Note that h ≤ m since the affinity masks of a task system form a laminar
family; moreover, by standard combinatorial arguments, there are at most 2m distinct
affinity masks.

We consider both FP and JLFP scheduling. In the case of FP policies, we denote
by φi the priority of Ti. In the case of JLFP policies, we denote by φi (at any time) the
priority of the unique pending job of Ti (at that time).

Let τ(t) be the set of ready tasks at time t. We represent the scheduler state at
time t by a bipartite graph G(t) = (τ(t)∪π,E(t)), where arc (Ti,Πj) belongs to E(t) iff
Πj ∈ αi. Hence, finding a valid allocation of tasks in τ(t) to processors π is equivalent
to finding a matching χ(t) in G(t).

However, not all matchings are equally desirable; in particular, one would like to
maximize the number of non-idle processors while mantaining the specified priority or-
dering, without causing affinity violations. Note that in some cases, a processor may
have to idle even though tasks are waiting. Two notions have been proposed to formalize
how a correct scheduler should behave in this context by Cerqueira et al.[4].

Definition 1. Weak Invariant. At any time t, for each ready task Tb not matched by
χ(t) and for each Πj ∈ αb, there exists a task Ti such that (Ti,Πj) ∈ χ(t) and φi ≥ φb.

As discussed in [4], the above requirement does not consider possible task shiftings
that could improve schedulability without violating the affinity constraints. To take
shiftings into account, a stronger definition is required based on alternating paths in
the graph G(t). Given a task Tb not matched to any processor by χ(t), an alternating
path (Tb = T`0 ,Πj1 , T`1 , . . . ,Πjk , T`k), k ≥ 0, from Tb to task T`k is a path in G(t)
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where (T`q ,Πjq) ∈ χ(t) and (T`q−1 ,Πjq) ∈ E(t), for each q = 1, . . . , k. A processor Πj is
reachable from Tb according to χ(t) if there exists an alternating path from Tb to a task
T` such that Πj ∈ α`. Let Rb(t) denote the set of processors reachable from task Tb in
G(t) with respect to the matching χ(t).

Definition 2. Strong Invariant. At any time t, for each ready task Tb not matched
according to χ(t) and for each Π` ∈ Rb(t), there exists a task Ti such that (Ti,Π`) ∈ χ(t)
and φi ≥ φb.

3 Results

Theorem 1. For any set of tasks with hierarchical processor affinities (HPA), there
exists a scheduler with a runtime complexity of O(m) per task arrival and O(log n+m2)
per task departure that maintains the strong invariant.

The algorithm is conceptually divided into two phases. In the first phase, we select
a set τ ′ of tasks in τ(t) that will be scheduled at time t. Tasks in τ ′ are selected in such
a way that there exists an assignment of tasks in τ ′ to processors in π that respects the
affinity masks and satisfies the strong APA invariant. In the second phase we find a
feasible assignment of tasks in τ ′ to processors in π according to their affinity masks.

Additionally, in the case of a bilevel affinity hierarchy and when job priorities are
based on deadlines, we argue that the performance of our strong HPA scheduler, HPA-
EDF, can be related to system optimality in the following way: any collection of jobs
that is schedulable (under any policy) on m unit-speed processors with the given affinity
constraints, is correctly scheduled by HPA-EDF on m processors of speed 2.415.

Finally, we have experimentally validated our approach by implementing a version of
our strong HPA scheduler in LITMUSRT [1], a real-time extension of the Linux kernel.

For a complete version of this work we refer to [3].
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1 Introduction

We consider the online traveling-salesperson problem (TSP) on the line. An instance of
this problem consists of requests σ1, σ2, . . . , σn where σi = (ti, ai) for all i. The task is to
schedule the tour of a server initially located at the origin and moving at most at unit
speed so that, for all i in arbitrary order, it serves request σi, i.e., visits location ai on
the real line after time ti. In the open version, the makespan is the earliest time when
this task is fulfilled; in the closed version, the server additionally needs to have returned
to the origin. We are interested in online algorithms, i.e., algorithms that, for all i, only
learn about request σi at time ti. We call an algorithm c-competitive if, for all instances,
its makespan is at most a factor c times larger than the (offline) optimum makespan.

Whereas this problem bears some resemblance to classical online problems such as
the k-server problem, it has first been considered about two decades ago by Ausiello et
al. [2]. Although online TSP on the line and variants of it have been extensively studied
since then, e.g., [1, 3, 5], there are no satisfactory (tight) results in terms of competitive
ratio known for this very natural online problem. For the open version, the optimal
competitive ratio is known to be at least (9 +

√
17)/8 ≈ 1.64 and at most 2; for the

closed version the gap remains between a trivial 2 and 7/3 ≈ 2.33 [3].
Our main contribution is a tight analysis of both the open and the closed version of

the problem. We present algorithms with competitive ratios (9 +
√

17)/8 ≈ 1.64 and
approximately 2.04 for the closed and open version, respectively. While the tightness of
the former result follows from the literature, we give a matching lower-bound construc-
tion for the latter one. For more details than provided by the observations and intuition
given below, we refer to the extended version of this abstract [4].
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2 Closed online TSP on the line

We show that the best known lower bound for closed online TSP on the line [3] is tight.

Theorem 1 For ρ = (9 +
√

17)/8 ≈ 1.64, there is a ρ-competitive algorithm for closed
online TSP on the line.

We provide some intuition. Consider some time t and the current position pt
of the algorithm’s server. Among those requests that are released but unserved,
let σL(t) = (tL(t), aL(t)) and σR(t) = (tR(t), aR(t)) be those two with minimal and max-
imal location, respectively, and call them the extreme requests. Here, we assume σL, σR

exist and aL(t) ≤ 0 ≤ aR(t). In the following, TLR(t) (and TRL(t) accordingly) is the
tour that starts at the origin at time 0, serves σL(t), then σR(t), and then goes back to
the origin, all as early as possible.

Our algorithm decides solely depending on t, pt, and the extreme requests either to
serve the requests immediately in some order or to wait. To see why waiting may be
necessary, suppose that, at time t, the algorithm immediately visits σL(t) and σR(t)
in this order. Starting at time 0, the optimum may however immediately serve the
requests in the other order. Let t? be the time when it serves σL(t), and let t0 be the
time when the algorithm reaches the origin after having served σL(t), and assume t? ≤ t0.
Throughout the interval [t?, t0), the optimum might continue moving to the left, resulting
in position p? at time t0. By presenting the request σ? = (t0, p

?) and using simple bounds
on the algorithm’s and optimum’s costs, we get that our algorithm needs to fulfill

t0 ≥
ρ · |aL(t)| − (2− ρ) · tL(t)

2ρ− 3
. (1)

Likewise we get a symmetric variant of this inequality. In contrast to this lower bound
on the waiting time, we derive the following upper bound: If no more requests are
released, our algorithm’s makespan may be at most ρ|Tgreedy| where Tgreedy is that tour
out of TLR, TRL with shorter makespan. So, assuming pt = 0, our algorithm may wait
at most until t1 = ρ|Tgreedy| − 2|aL(t)| − 2|aR(t)|. We can show that, by our choice of ρ,
there exists a safe tour starting in the origin at time 0 and fulfilling both the upper and
lower bound on the waiting time.

Indeed, our algorithm tries to be on the safe tour before it serves the first request. If
this is impossible, the algorithm tries to at least fulfill Inequality (1) (or its symmetric
variant). If even that is not possible, the algorithm simply minimizes the makespan of
its tour in case no more requests are released. Handling this case is the main challenge
of the analysis.

3 Open online TSP on the line

There is a very simple lower bound of 2 for open online TSP on the line: There is
one request σ1, either (1,−1) or (1, 1), whichever is further away from the online server.
Clearly, the optimum makespan is 1, and the online algorithm’s is at least 2. Remarkably,
the tight lower bound is very close to 2 but not exactly 2.

Theorem 2 Let ρ ≈ 2.04 be the second-largest root (out of the four real roots) of 9ρ4 −
18ρ3 − 78ρ2 + 210ρ − 107. There is no (ρ − ε)-competitive algorithm for open TSP on
the line for any ε > 0.
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Assume that σ1 as described above has a positive location. The main idea is to
subsequently present requests σL1 , σ

R
1 , σ

L
2 , σ

L
2 , . . . alternatingly at positive and negative

locations until two of them are critical, which we show to happen after a finite number of
steps for any ρ′-competitive algorithm with ρ′ ≤ ρ. So assume that two critical (and thus
unserved) requests σL, σR exist, and the algorithm serves σL first. We show, however,
that the algorithm, either serves σR too late to be ρ-competitive, or it needs to visit
the location of σL again afterwards due to another request. The resulting makespan can
be shown to be too large, and we can use a similar construction when the algorithm
serves σR first.

Theorem 3 Let ρ ≈ 2.04 as in Theorem 2. There is a ρ-competitive algorithm for open
online TSP on the line.

This algorithm resembles our algorithm for the closed version of the problem in the
sense that it delays its decision on which extreme request to serve first as long as possible
subject to staying ρ-competitive in different situations.

4 Further results and future work

A generalization of online TSP on the line is online Dial-A-Ride on the line. Here, every
request σi needs to be transported from its start location ai to its target location bi.
There are different versions depending on the capacity c of the server and whether
requests may be preempted, i.e., dropped off at a location different from their target
location. For instance, we give an algorithm with competitive ratio

√
2 + 1 ≈ 2.41 for

the preemptive open version with c ≥ 1, improving the previously best known upper
bound of

√
2 + 2 ≈ 3.41. There are however no tight competitive ratios known for any

version of online Dial-A-Ride on the line.
For the offline version of online TSP on the line, we adapt a known polynomial-

time dynamic program for the open version to the closed version. We also settle the
complexity of the non-preemptive version, which was only known for c ∈ {1, 2}, and
show that is NP-hard for any c ≥ 2. The complexity of few versions remains open, e.g.,
offline Dial-A-Ride with unbounded capacity.
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Complexity and Online Algorithms

For a Coloring Problem on a Line

Thomas Erlebach ∗ Fu-Hong Liu † Hsiang-Hsuan Liu † ‡ (Speaker)

Mordechai Shalom § Prudence W.H. Wong ‡ Shmuel Zaks ¶

1 Introduction

We consider a coloring problem that arises in the context of wavelength assignment on
an optical line network [1, 6]. Related coloring problems on a line network with different
objective functions include [2, 3, 7, 8].

We are given a set of n intervals I = {I1, I2, · · · , In}. Each Ij is an interval [sj , ej),
where sj and ej denote the start and end time of the interval Ij , respectively. Two
intervals Ii and Ij are said to be overlapping if Ii ∩ Ij 6= ∅. We say that interval Ij
contains time t if t ∈ Ij . The load at time t, denoted by load(t) is the number of intervals
containing t. The length of Ij , denoted by `(Ij), is defined as ej − sj . The maximum
and minimum length over all intervals in I is denoted by `max and `min, respectively.
The length of any set of intervals S is defined as the sum of the length of all intervals in
S, i.e., `(S) =

∑
I∈S `(I). Without loss of generality, we can assume that the intervals

in I form a contiguous interval, otherwise, the scheduling of each contiguous interval is
independent of the others, so we can focus on just one such contiguous interval.

We are also given an infinite set of colors Λ = {1, 2, 3, · · · }, each color i is associated
with a cost λ(i) ≥ 1 which is an increasing function such that λ(i) < λ(i′) if i < i′.
Unless specified otherwise we assume λ(i) = i. A coloring ω : I → Λ is valid if for
any pair of overlapping intervals Ii 6= Ij , ω(Ii) 6= ω(Ij). The cost of ω at any time t,
denoted by cost(ω, t), is the maximum cost of the color over all intervals containing t,
i.e., cost(ω, t) = maxI:t∈I λ(ω(I)). The total cost of ω, denoted as cost(ω), is defined as
the sum of the cost over all times t, i.e., cost(ω) =

∫
t cost(ω, t). The objective of the

MinSumMax problem is to find a valid coloring ω such that cost(ω) is minimized.

For any algorithm A we also denote its coloring by A, and its cost is cost(A). We
denote by O the optimal offline algorithm.
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2 Our contribution

2.1 The MinSumMax problem

A more general problem has been studied in [1] which was proved to be NP-complete.
On the other hand, their 2-approximation algorithm applies to our problem.

We first show by a reduction from circular arc coloring [5] that, our problem
MinSumMax which is simpler remains NP-complete.

Theorem 1. MinSumMax is NP-complete.

We then propose online algorithms which give O(1)-competitiveness when the ratio
of maximum and minimum length of intervals is bounded by a constant and O(log `max

`min
)-

competitiveness for arbitrary length intervals where `max and `min denote the maximum
and minimum length of intervals.

Bounded length intervals. Consider bounded length intervals for which we assume
there is a constant k such that for any interval I in the input, we have `(I) ∈ [`min, k·`min).
When an interval Ij ∈ I arrives, G assigns the minimum color that is valid for it, i.e., G
assigns the minimum color i such that for all j′ < j and Ij′ ∩ Ij 6= ∅, we have G(Ij′) 6= i.

Our analysis identifies intervals that “contribute” to the cost of a coloring and uses
their length to bound the total cost. The skyline of a coloring ω is the function of the
maximum color used at any time t. We denote the set of intervals on the skyline by IS
which contains intervals whose color is on the skyline for some time t, i.e., an interval I
is in IS if there exists t ∈ I such that cost(ω, t) = λ(ω(I)). We further select a subset I∗S
of intervals on the skyline of G from IS, partition the time horizon into segments based
on I∗S , and show that we can “charge” the cost of G and O to this subset, thus allowing us
to bound the two costs. The partition of time is based on a notion of extended interval.
For any interval Ij , we define its hat interval as Ihj = [sj−k`min, ej +k`min) and extended
hat interval as Iej = [sj − 3k`min, ej + 3k`min).

We show that we can select I∗S satisfying the following properties. We denote by q(j)
the indexes of intervals chosen, i.e., I∗S = {Iq(1), Iq(2), · · · } where q(j) < q(j + 1).

Lemma 2. We can select I∗S such that for any j ≥ 1, we have (i) Ihq(j) ∩ Ihq(j+1) = ∅;
(ii) Ieq(j) ∪ Ieq(j+1) forms a contiguous interval; (iii) sq(j+1)− sq(j) ≤ 7k`min and eq(j+1)−
eq(j) ≤ 7k`min. (iv) For any interval I ∈ IS, there exists j ≥ 1 such that I ⊆ Ieq(j) and

G(I) ≤ G(Iq(j)).

The above properties then lead to the following theorem.

Theorem 3. The greedy algorithm G is 7k-competitive when k = `max/`min is a constant.

Arbitrary length intervals. One can show that the above competitive ratio of
the greedy algorithm is tight up to a constant factor, meaning that for arbitrary length
intervals, the competitive ratio can be very large. To have a better competitive ratio,
we use a standard technique of classification to partition the input intervals I into
O(log `max

`min
) classes where in each class the length of the intervals is bounded to be

within a ratio of 2. This means that if we apply the greedy algorithm for individual
class, then we obtain a competitive ratio of 14 = 2 × 7. Let L = 1 + dlog `max

`min
e. We

denote the classes by C1, C2, · · · , CL. We assume that the classified-greedy algorithm,
denoted by C, knows about the ratio of the maximum to minimum length of intervals.
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C divides the colors into bands of size L, the i-th color in each band is reserved for
intervals in class Ci. Precisely, the color set Λi = {i, i+L, i+ 2L, i+ 3L, · · · } is reserved
for intervals in Ci. Intervals in each class Ci are colored independently using the greedy
algorithm G over the color set Λi.

At first glance, the competitive ratio of C is O(L2). A more detailed analysis reveals
that the competitive ratio is indeed O(L).

Theorem 4. For arbitrary length intervals, C is O(log `max
`min

)-competitive.

Lower bound for arbitrary length intervals. There is a lower bound for any
deterministic online algorithm:

Theorem 5. There is an adversary such that for any deterministic online algorithm A,
cost(A)/cost(O) ≥ 1

2 log `max
`min

.

2.2 Variant — permutation problem

In the MinSumMax problem the algorithm has to assign a color to each interval. We
consider a variant of the problem where the input is sets of intervals each of which
contains intervals that are pairwise non-overlapping and all such intervals in a set are
given the same color. The problem is to find a permutation of the colors such that the
cost of the coloring (as defined above) is minimized. This problem may sound easier
since we do not need to assign color but only need to find a permutation of colors. It
turns out that this variant is still NP-complete via a reduction from the directed optimal
linear arrangement problem [4].
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Generalized Lower Bounds for Online Matching on the Line

Antonios Antoniadis ∗ Carsten Fischer (Speaker) † Andreas Tönnis ‡

1 Introduction

The online matching on the line problem is a notorious special case of the online metric
matching problem. The task is to match a set of requests R online to a given set of
servers S. The distance metric between all points in R and S is a line metric and the
objective for the online algorithm is to minimize the sum of distances between matched
server-request pairs.

For the more general problem, where the underlying metric is not restricted to the
line, the best possible competitive ratio is 2n−1 and there are several different algorithms
that achieve this ratio [5, 4, 7]. These algorithms are closely related to the offline
algorithm for weighted, bipartite matching and use a scoring function on alternating
paths to guide their decision.

In the more special case of line metrics, the linear lower bound does not hold up. For
a long time, the best known lower bound for the problem was 9 and it was believed to
be tight. But in 2003, it was shown, that no deterministic algorithm for OML could be
better than 9.001-competitive [2] and this remains the best known lower bound.

For upper bounds, the best known algorithms are the work function algorithm and
the k-lost cows algorithm. The work function algorithm is inspired by the corresponding
algorithm for the k-server problem. It strikes a balances between greedy decisions and
the optimal set of free servers in hindsight. The algorithm is conjectured to be O(log n)-
competitive, but the best known upper bound for the algorithm is O(n) [6, 8]. The only
known deterministic algorithm with a sub-linear competitive ratio is the k-lost cows
algorithm by Antoniadis et al. [1]. Their algorithm uses a connection of the matching
problem to the lost cow search problem. They give a tight analysis and prove that their
algorithm is Θ(n0.58)-competitive.

The best known randomized algorithms are due to Gupta and Lewi. In [3], they intro-
duce three algorithms for the online metric matching problem, which are all O(log(n))-
competitive.

2 Our contribution: New lower bounds

We describe two important properties of algorithms for online matching on the line. It
is well known, that if we want to match a request r to a server, we can restrict ourselves
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to the nearest free servers sL and sR, placed on the left and right of r. We call these
two servers the surrounding servers for request r. Rob van Stee introduced the concept
of local algorithms:

Definition 1 ([8]) Let sL and sR be the surrounding servers for request r. An online
algorithm is called local if it serves r with one of sL and sR and the choice is based only
upon the history of servers and requests in the local-interval I = [sL, sR] of r.

To the best of our knowledge, all known (deterministic) algorithms, belong to the
class of local algorithms. The second natural property we want to introduce is symmetry :

Definition 2 Let A be a local algorithm, and consider the arrival of a request r with a
local interval I = [sL, sR]. Algorithm A chooses one of the servers sL and sR to match
r to. Let m = (sL + sR)/2 be the point in the middle of interval I. We say that interval
I ′ is a mirror of I if it is the same as I but mirrored by m, i.e., every server and
arrived request (including the non-yet matched request r) in the interval is as in [sL, sR]
but mirrored by m, and the same servers-requests pairs are matched. We say that A
is symmetric, if for any interval I it chooses to match r to the opposite server than it
would do in I’s mirrored interval I ′.

Let A denote the class of algorithms, which behave local and symmetric. It seems to
be very natural to behave symmetric for a local algorithm, so A covers a broad class of
algorithms. To be precise: All deterministic algorithms we are aware of, e.g. the work
function algorithm or the k-lost-cows algorithm, belong to A. We show that there is no
hope to break the Ω(log(n))-barrier on the competitive ratio of such algorithms.

Theorem 3 Let A be an algorithm, which belongs to A. Then, there exists an instance
with n servers, where n is arbitrary large, such that the competitive ratio of A is in
Ω(log(n)).

We give a bottom-up construction of the instance based on recursively combining
gadgets. The resulting instance resembles a binary tree. The algorithm generates a
matching with a lots of crossings, while the optimal solution matches all requests to
the next server to the left (or right, respectively). So the cost of the optimum solution
on these instances is in O(n), while the algorithm incurs cost of Ω(n) at each of the
log(n) levels of the instance. We note that the lower-bound instance of Koutsoupias and
Nanavati [6] can be considered as a special case of our instance.

We also show that this result can be extended to all algorithms, which allow for
such a gadget-construction, without growing the cost of the optimum solution too much.
Furthermore, we show that this lower bound also applies to a broad class of randomized
algorithms, e.g. the Harmonic-algorithm introduced in [3].
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Branch-and-Cut for Machine Scheduling With

Non-Renewable Resources and the Lmax Objective∗

Péter Györgyi (Speaker) † Tamás Kis ‡

1 Introduction

In a machine scheduling problem with non-renewable resources, besides the machine(s),
there are non-renewable resources, like raw material, energy, or money, consumed by
the jobs. The non-renewable resources have some initial stock, and they are replenished
over time in given quantities. The objective function can be any of the widely-used
optimization criteria in machine scheduling problems, see e.g., [2, 3].

In this paper we propose an exact method for the following variant. There is a single
machine, a set of n jobs J , and a set of ρ non-renewable resources R. Each job j has
a processing time pj > 0, a due-date dj , and resource requirements aij ≥ 0 for i ∈ R.
The non-renewable resources have an initial stock b̃i,1 ≥ 0 at time u1 = 0, and they are
replenished at q − 1 distinct supply dates 0 < u2 < · · · < uq in quantities b̃i` ≥ 0 for
` = 2, . . . , q, and i ∈ R. Note that if b̃i` = 0 for some ` ≥ 2, then resource i is not supplied
at date u`, or it has an initial stock 0 if bi,1 = 0. However, for each i ∈ R, the total
demand does not exceed the total supply, i.e.,

∑
j∈J aij ≤

∑q
`=1 b̃i`. The cumulative

supply of resource i up to supply date u` is bi` =
∑`

k=1 b̃ik. A schedule specifies the
starting time Sj of each job j ∈ J ; it is feasible if (i) no pair jobs overlap in time, i.e.,
Sj1 +pj1 ≤ Sj2 or Sj2 +pj2 ≤ Sj1 for each pair of distinct jobs j1 and j2, and (ii) for each
resource i ∈ R, and for each time point t, the total supply until time t is not less than
the total consumption of those jobs starting not later than t, i.e., if u` ≤ t is the last
supply date before t, then

∑
j∈J :Sj≤t aij ≤ bi` for each resource i ∈ R. We aim at finding

a feasible schedule S minimizing the maximum latenessLmax(S) := maxj∈J Sj + pj −dj .
This problem is NP-hard in the strong sense [2], but it admits a polynomial time

approximation scheme if aj is proportional to pj even if we have a fixed number of
parallel machines [3]. There are sporadic results on exact methods for machine scheduling
problems with non-renewable resources. Briskorn et al [1] propose a branch-and-bound
method for the problem 1|inv|∑wjCj , where some of the jobs consume, while other
jobs produce some non-renewable resources, and there is an initial stock, but no further
replenishments. In order to solve the problem efficiently, the authors propose dominance
rules, lower and upper bounds to prune the search-tree. Computational results are
reported up to 20-job instances.
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Our contributions We propose an exact method for solving the single machine
scheduling problem with non-renewable resources and resource-consuming jobs and with
the maximum lateness objective. Our method is based on branch-and-cut, i.e., linear-
programming based branch-and-bound method augmented with cutting planes. We pro-
pose a number of inequalities to strengthen the LP relaxation, and present computation
results on problem instances with up to 100 jobs.

2 Problem formulation

We use three main types of variables to model the problem. Cj denotes the completion
time of job j ∈ J and for each ordered pair of jobs j1, j2 ∈ J with j1 < j2, the binary
variable ordj1,j2 has value 1 if and only if j1 precedes j2 in the schedule. Finally, there
are q · |J | binary decision variables zj`, j ∈ J , ` = 1, . . . , q to assign jobs to supplies,
i.e., zj` = 1 if and only if job j only consumes resources supplied at u` or before. Then
zj` ≥ zj,`−1 must hold and if zj` − zj,`−1 = 1 then job j must be scheduled after u`. We
provide only the most important part of our MIP model:

Lmax ≥ Cj − dj , j ∈ J (1)

Cj − pj ≥
q∑

`=2

u` · (zj,` − zj,`−1), j ∈ J (2)

∑

j∈J
aijzj` ≤ bi`, ` = 1, . . . , q, i ∈ R (3)

zj,` ≥ zj,`−1, j ∈ J , ` = 2, . . . , q (4)

The objective is to minimize Lmax, subject to the above constraints and those ensuring
a total ordering of the jobs, which is standard.

3 Cutting planes

We defined four different classes of cuts to strengthen the LP relaxation. First, we have
adapted the cutting planes of [4] to our problem:

∑

j∈S
pj(dmax(S) + Lmax − Cj + pj) ≥

1

2
(
∑

j∈S
p2j + (

∑

j∈S
pj)

2), S ⊂ J ,

where dmax(S) is the maximum dj among those jobs in S. The second class consists of
cuts derived using a pair of jobs and their impact on Lmax:

Lmax ≥ Cj1 − (pj2 − dj2 + dj1) · (1− ordj1,j2) + pj2 − dj2 , j1, j2 ∈ J .

The cuts in the third and fourth class may cut off feasible solutions, but they leave at
least one optimal solution. That is, the cuts in the third class cut off solutions in which
two jobs both starting in some interval [u`, u`+1] are not in earliest due-date (EDD)
order:

ordj1,j2 ≥ zj1,`+1 − zj1,` + zj2,`+1 − zj2,` − 1, j1, j2 ∈ J , dj1 < dj2 ,
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Figure 1: The case ρ = 1, q = 10. Each bar represents the average of 10 instances.

whereas those in the fourth class cut off solutions in which the total processing time of
those jobs starting in some interval [u`, u`+1] is more than u`+1 − u` + pmax, since there
always exists an optimal solution respecting this bound:

∑

j∈J
(zj,` − zj,`−1) · pj ≤ u`+1 − u` + pmax, ` = 1, . . . , q.

4 Computational results

We have generated a data set consisting of 30-, 50-, and 100-job instances, 1 through 10
resource types, and varying number of supply dates. We implemented our method using
FICO Xpress and the Mosel language. All computations were performed on a PC with
i5 processor, the time limit of each run was 600 seconds.

Figure 1 depicts the average gaps (maximum lateness of the best schedule divided
by the best lower bound) for the different settings. As can be seen, the 50-job instances
are the hardest in our benchmark set, and on this set the best results are obtained by
using only our cuts and no built-in cuts of Xpress at all. Our cuts significantly improve
the performance of branch-and-cut especially on the most difficult instances. In most
cases the results without the built-in cuts of Xpress are even better. Interestingly, if we
have more than one resource, the problem becomes easier in general.
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Optimal Algorithms for Train Shunting and Relaxed List

Update Problems

Tim Nonner ∗ Alexander Souza (Speaker) †

1 Introduction

This paper considers a Train Shunting problem where we are given a set J of n
cars and a set of stations. Each car has a source station and a later target station.
Moreover, we have a locomotive which visits the stations in a predefined order, and
once the locomotive passes the source of a car, it needs to be added to the current train
configuration. On the other hand, once its target is passed, it needs to be removed. Any
such action is called a shunting operation. Adding or removing a car at the end of the
train is called an outer shunting operation and incurs low cost, but adding or removing
truly in the interior requires a more complex inner shunting operation and thus yields
high cost. The objective is to schedule the adding and removal of cars as to minimize the
total shunting cost. This problem actually originated from a discussion at the Deutsche
Bahn AG. Thus, even though it is simple and stated cleanly mathematically, it has a
concrete practical application. We will explain later that we can also think of Train
Shunting as a relaxed version of the well-known List Update problem.

Related work. Shunting problems are usually considered in the context of a single
hump-yard or shunting-yard which serves as a central facility to rearrange trains. For
a detailed description, we refer to the survey of Gatto et al. [5] and the papers of Di
Stefano and Koci [4], Beygang, Dahms, and Krumke [2], Jacob et al. [7], and Gatto et
al. [9].

By contrast, our problem considers shunting from a more global perspective since
the evolution of a train is treated from its origin to its destination. Already in 2006, a
similar perspective was taken in a seminal operations research paper by Kroon et al. [8],
in which the construction of the dutch timetable is explained.

2 Train Shunting

We derive polynomial time algorithms for Train Shunting by reducing this problem
to finding independent sets in bipartite graphs. Our approach works as follows: We
first observe that any two cars exclude each other from using a cheap outer shunting
operation if they overlap. The key observation is then that these overlap dependencies
can be captured in a bipartite constraint graph, and our main theorems state that any
maximal (with respect to inclusion) independent set in this graph corresponds to a set
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of cars that can be served with cheap outer shunting operations, and vice versa. The
proofs show how to convert any maximal independent set into a solution for Train
Shunting algorithmically in O (n2

)
running time. It is well-known that the weighted

and unweighted Independent Set problem is polynomially solvable in the case of
bipartite graphs.

Let sj denote the event that car j enters the train (at its source) and tj the event
that j leaves (at its target). If sj < sj′ < tj < tj′ , then we say that the cars j, j′ are
overlapping, and otherwise, we say that they are independent. Especially, if sj < sj′ <
tj′ < tj , then we say that they are nested.

This induces an ordering of the shunting events, it turns out that only the overlapping
pairs of cars j, j′ are problematic: Either the addition of car j′ or the removal of car
j can not be a (cheap) outer shunting operation. Therefore, we have to decide which
car encounters an outer and which an inner shunting operation. Motivated by this
observation, we define the following bipartite graph G = (S ∪ T,E) with vertices S ∪ T
and edges E, where S and T denote the set of source- and target-events, respectively,
and for any two overlapping cars j, j′, we add the edge {sj′ , tj} to the set E.

Now we define solutions of Train Shunting as follows: Any sequence C over ele-
ments of J is called a configuration, and the left-most element in C is called the end.
Using this, a solution C defines a configuration C(e) for each event e such that j ∈ C(e)
for sj ≤ e < tj and j 6∈ C(e) for e < sj and e ≥ tj .

The following two main results establish an equivalence between solutions for Train
Shunting and independent sets in bipartite graphs.

Theorem 1 Let C be any solution of the Train Shunting problem and let U be the
events having outer shunting operations. Then U is an independent set in G.

Theorem 2 Let U be a maximal independent set in G. Then there is a solution C for
Train Shunting such that exactly the events U have outer shunting operations.

These results allow us to treat several variants of the problem in a generic way.

Specifically, we obtain an algorithm with running time O
(
n5/2

)
– using an algorithm

of Hopcroft and Karp [6] –for the uniform case, where all low costs and all high costs
are identical, respectively. Furthermore, for the non-uniform case we have running time
of O (n3

)
. Both versions translate to a symmetric variant, where it is also allowed to

add and remove cars at the front of the train at low cost. In addition, we formulate
a dynamic program with running time O (n4

)
, which exploits the special structure of

the graph. Although the running time is worse, it allows us to solve many extensions,
for instance, economies of scale, dependencies between consecutive stations, and price-
collection. Specifically, in the economies of scale variant, we provide a discount if many
inner shunting operations are performed at the same station. Dependencies between
stations, for example, occur if we want to avoid that two consecutive stations need to
perform inner shunting operations. Finally, in the price-collection variant, we get paid
for transporting cars, and the goal is find the best tradeoff between profit and shunting
operation cost.
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3 Relaxed List Update

In the List Update problem, we are given a linked list, which supports the operations
put and get. A call of Put(i, x) stores a data item x at position i in the list, yielding
access cost of i. A call of Get(x) returns and removes x (if present) from the list,
at access cost equal to the position of x. This classical List Update problem was
introduced in a seminal paper by Sleator Tarjan [10]. It was shown by Ambühl [1] that
the offline List Update problem is NP-hard.

The Relaxed List Update problem, which we introduce here, features the follow-
ing cost model: An access at the head of the list encounters low cost c ≥ 0. Otherwise,
we are charged a high cost of c′ > c. That is, the access is either cheap, if it is at the head
of the list, or expensive, if it is not. Observe that each sequence of put/get operations
translates directly into an instance of Train Shunting with uniform low cost c and
high cost c′ > c.
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On the Parameterized Complexity of Scheduling With Side

Constraints: Recent Results and New Challenges

René van Bevern ∗

In a keynote speech at MAPSP 2015, Rolf Niedermeier motivated the parameterized
complexity analysis of scheduling problems and, in particular, presented then recent
results on the Job Interval Selection Problem [2]. This talk reports on new results on the
parameterized complexity of scheduling problems with release times and deadlines [4],
precedence constraints [3], and sequence-dependent batch setup times or routing [1].

1 Parallel identical machines, release times and deadlines

The problem P|pj , dj | of checking whether it is feasible to process each of n jobs j ∈ J
non-preemptively for a given amount pj ∈ N of time within a given interval [rj , dj),
rj , pj ∈ N, on m parallel identical machines is NP-hard even for m = 1. Since it
generalizes Bin Packing, which becomes trivial if each item fills more than half of a bin,
it is natural to study the influence of looseness and slack on the complexity of P|pj , dj |:

Definition 1 A job j ∈ J has looseness |dj − rj |/pj and slack |dj − rj | − pj.

If all jobs have looseness one, then P|pj , dj | is trivial. Cieliebak et al. [6] showed that
P|pj , dj | is polynomial-time solvable for jobs of maximum slack one but NP-hard for any
constant maximum slack σ ≥ 2 and for any constant maximum looseness λ > 1. Using
a reduction from Bin Packing, one can strengthen the result on maximum looseness:

Theorem 2 ([4]) P|pj , dj | with any constant maximum looseness λ > 1 is
(i) weakly NP-hard even for m = 2 machines and

(ii) strongly W[1]-hard parameterized by the number m of machines.

Theorem 2(i) excludes polynomial-time algorithms even when both λ and m are fixed.
One can, however, show a pseudo polynomial-time algorithm for each fixed m and λ:

Theorem 3 ([4]) P|pj , dj | with m machines and maximum looseness λ is solvable in
`O(λm) · n time if the jobs are sorted by release times, where ` = maxj∈J |dj − rj |.
Theorem 2(ii) excludes f(m)·nO(1)-time algorithms for any fixed maximum looseness λ >
1 even if all numbers in the input are bounded polynomially in n. In contrast, one can
show a linear-time algorithm if both m and and the maximum slack σ are fixed.

Theorem 4 ([4]) P|pj , dj | with m machines and maximum slack σ is solvable in time
O((σ + 1)(2σ+1)m · σm · log σm · n) if the jobs are sorted by release times.

Question 5 ([4]) Is P|pj , dj | NP-hard or polynomial-time solvable when both maximum
looseness λ and slack σ are fixed? In case of the latter, is it solvable in f(λ, σ)·nO(1) time?
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2 Resource and precedence constraints

Mnich and Wiese [7] have recently shown an f(pmax) ·nO(1)-time algorithm for P||Cmax,
the problem of non-preemptively processing each of n jobs j ∈ J for a given a-
mount pj ∈ N of time on m parallel identical machines with minimum makespan, where
pmax = maxj∈J pj . They asked whether there is an f(pmax, w) · nO(1)-time algorithm for
P|prec|Cmax, where an additionally given partial order imposes precedence constraints on
the jobs and w is the width of the partial order—the cardinality of its largest antichain.
For unit processing times, Bodlaender and Fellows [5] showed twenty years earlier:

Theorem 6 ([5]) P|prec,pj=1|Cmax is W[2]-hard w. r. t. the number m of machines.

Careful inspection of their proof shows that the hard instances have width w = m + 1.
This is remarkable since the problem is trivial for w ≤ m and since it already answers
Mnich and Wiese’s question negatively. One can give a stronger negative answer; the
sought algorithm does not even exist when the number of machines is fixed to be two:

Theorem 7 ([3]) P2|prec,pj∈{1, 2}|Cmax is W[2]-hard w. r. t. the partial order width w.

Using an additional lag parameter, one can derive positive results:

Definition 8 (lag) Let (σj)j∈J be the (not necessarily feasible) schedule that starts each
job j ∈ J at the earliest possible time σj, i. e.,
– ∀j ∈ J0 : σj = 0, where J0 are the jobs without predecessors,
– ∀j ∈ J \ J0 : σj = maxk≺j(σk + pk), where ≺ is the partial order.
The lag of a schedule (sj)j∈J that starts each job j ∈ J at time sj is maxj∈J(sj − σj).

Theorem 9 ([3]) A minimum-makespan schedule with lag at most λ for P|prec|Cmax,
if one exists, can be found in (2λ+ 1)w · nO(1) time, where w is the partial order width.

The algorithm easily generalizes to the Resource-Constrained Project Scheduling Prob-
lem (RCPSP) [3] and is a refinement of a geometric pseudo-polynomial time algorithm
for the RCPSP with fixed partial order width w due to Servakh [9]: Theorem 9 can
be proved by modeling the problem as the search for a shortest piecewise linear path
from one corner of a w-dimensional orthotope to the opposite corner that avoids infea-
sible suborthotopes and whose linear segments start and end in 2n many w-dimensional
subhypercubes with edge length 2λ.

The width parameter alone might still lead to positive results for the three-machine
problem with unit processing times, since it is a long-standing open question whether it
is polynomial-time solvable or NP-hard:

Question 10 ([3]) Is P3|pj=1|Cmax solvable in f(k) · nO(1) time for any parameter k
that does not bound the input size, e. g., for the partial order width?

3 Open Shop with routing or batch setup times

Open Shop is the problem of processing each job j ∈ J on each machine q ∈ M non-
preemptively for piq ∈ N time with minimum makespan. Each machine processes only
one job at a time; each job is processed by only one machine at a time. In Routing Open
Shop, the jobs are located in the vertices of a graph G = (V,E) with edge weights that
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determine the time needed for moving machines between vertices. The edge weights also
have a natural interpretation as sequence-dependent family or batch setup times.

Routing Open Shop is NP-hard for |V | = |M | = 2, yet polynomial-time solvable in
this case when allowing preemption [8]. For unit processing times, one can show

Theorem 11 ([1]) Routing Open Shop with unit processing times is
(i) solvable in 2O(|V ||M |2 log |V ||M |) · |J |O(1) time and

(ii) solvable in O(2|V | · |V |2) + |J |O(1) time if each vertex contains at least |M | jobs.

Routing Open Shop with unit processing times can be interpreted at the task of process-
ing large batches of roughly equal-length jobs in several storage depots, where processing
each individual batch item takes significantly less time than moving a machine from one
depot to another. In this context, it is plausible that the requirement on the number of
jobs in each vertex in Theorem 11(ii) is fulfilled, yet it seems challenging to get rid of it:

Question 12 ([1]) Is Routing Open Shop with unit processing times fixed-parameter
tractable parameterized by |V |, i. e., solvable in f(|V |) · (|J |+ |M |)O(1) time?
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Computing Efficient Pressing Operations for Glued

Laminated Timber Production

Heiner Ackermann (Speaker) ∗ Andreas Dinges †

1 Introduction

Glued laminated timber (glulam) consists of several layers of timber glued together with
moisture-resistant adhesives. It is used in areas, such as roof construction, where beams
with large profiles and high strength are required, and which cannot be sawn from a
single trunk. Glulam is available in various profiles.

Glulam production is a long lasting process and requires multiple production stages.
First, boards in uniform thickness but different widths are sawn and dried. Secondly,
boards of the same widths are jointly processed in batches. Within a batch, glulam
with fixed width but different heights, depending on the number of boards stacked, is
produced.

In the first step of a batch, boards are finger-jointed in order to produce boards of
the required lengths. Subsequently, adhesive is applied and boards are stacked. There-
after, stacked boards pass a high-frequency press in order to harden the adhesives. The
resulting beams are finally planed and packed. Within a pressing operation, several
beams can be processed, as long as they are of the same length and do not exceed the
maximum pressing height.

Formerly, customers have ordered large numbers of glulam in fixed lengths. For that
reason sawmills have preproduced these lengths and served customers from stockpiles.
However, nowadays customers are changing their order policies and switch to smaller
numbers of non-standard lengths. Cutting these lengths from beams on stock generates
a lot of waste material and requires manual handling.

For that reason, sawmills need to switch production from a few standard lengths to
individual lengths. This however significantly increases the complexity of production
planning.

In this talk we focus on the computation of pressing operations for a single batch and
present a heuristic for solving this problem. Before that, we summarize the constraints
and the planning goals.

∗heiner.ackermann@itwm.fraunhofer.de. Fraunhofer Institute for Industrial Mathematics ITWM,
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2 Constraints & Goals

• Within a batch, all lengths requested by a single customer shall be produced in
sequence.

• Pressing operations must not fall below (exceed) minimum (maximum) pressing
lengths and heights.

• Minimize the number of height changes between subsequent pressing operations,
as these generate significant ramp-up times.

• If needed, it is feasible to prolong beams and to fill up pressing operations.

• Minimize the total filling volume and maximize the length of filling pieces.

3 The Heuristic

The heuristic we propose runs in three phases. In the first phase, it computes pressing
operations for each customer individually. In the second phase, it combines infeasible
precomputed sequences. In the last phase, it determines the processing order of precom-
puted and combined pressing sequences.

3.1 Single Customer

Assume that a single customer orders beams of identical height but of different lenghts.
Furthermore, assume that all beams exceed the minimum pressing length. In this case
it is straightforward to construct a sequence of pressing operations with the following
properties:

• Their lenghts coincide with ordered lenghts.

• All operations are feasible and have the same height, potentially except the last
one.

• Fill-up pieces have maximal lenghts.

If some ordered beams fall below the minimum pressing length, we try to combine
them into feasible lenghts. We can achieve this by solving bin-packing problems with
varying bin sizes and consider all beams assinged to the same bin as a joint beam.

If there actually is just a single customer, we fill up the potentially infeasible last
pressing operation.

3.2 Multiple Customers

Assume now that mutiple customers order beams. For each customer, we precompute
a sequence of pressing operations as described above and select those with an infeasi-
ble last pressing operation. Since the number of different customers is typically small,
we can enumerate all meaningful combinations of precomputed pressing sequences. A
combination is meaningful if we reverse one sequence and process the two infeasible op-
erations in a joint operation. For each such combination we compute the total fill-up
volume.
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Finally, we select a set of combinations such that each of the precomputed sequences
is contained in one of them. We achieve this via solving a set-partitioning problem on
the set of all combinations.

3.3 Determining the Processing Order

Finally, we determine the processing order of the precomputed and combined pressing
sequences in order to minimize set-up times between pressing operations of different
heights. We achieve this via a reduction to a travelling-salesperson problem.

4 Implementation

We have implemented the heuristic in C# using Google OR Tools to solve both the
set-partitioning and travelling-salesperson problem. The heuristic runs efficiently on
real-world instances and outperforms solutions generated by human experts. A detailed
evaluation and theoretical analysis is subject to future work.
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A New Model of Continuous Learning and Its Applications

In Scheduling

Bart lomiej Przybylski ∗

1 Introduction

In many real-world applications of scheduling theory the processing times of jobs are
variable, not fixed. Job processing time may then change in response to some environ-
mental factors, such as the amount of resources available, its starting time or its position
in a schedule. Recently, a part of the latter case—scheduling problems with learning ef-
fect—is gaining more and more attention. We refer the reader to Biskup [2], Agnetis
et al. [1] and Strusevich and Rustogi [9] for more details on this subject.

The first model of learning effect in scheduling, where the processing time of a job
depends on the number of jobs executed earlier, was proposed by Gawiejnowicz [4]. An
equivalent variation of the model was introduced by Biskup [3]. In this case the actual
processing time of the j-th job placed on the r-th position on a particular machine
is the product of its basic processing time p̄j and the so-called learning factor, that
is pj,r = p̄jr

a, where a < 0 is a learning index. This model was then extended, for
example, by Mosheiov and Sidney [6] who analysed the case, where the learning indices
are related to jobs, that is pj,r = p̄jr

aj . One of the models where the actual processing
time of a job does not depend on the number of jobs executed earlier, but on the sum of
their processing times, is the model introduced by Kuo and Yang [5] who assumed that
pj,r = p̄j(1 +

∑r−1
k=1 p̄[k])

a, where p̄[k] is the basic processing time of a job scheduled on
k-th position.

Most of the models with learning effect covered in literature make the processing
time of a job depend linearly on a function of either the sum of basic processing times
or the number of jobs executed earlier (equivalently, the position of a job in a schedule).
That means that in most of classical models with learning effect the execution of two
unit jobs takes less time than the execution of one job, which is two units long. However,
in many real-life situations the process of learning occurs not only before, but also during
the execution of a job.

In this presentation we propose a new model, where the processing time of a job
is calculated as a Riemann integral of a given positive and non-increasing function on
a certain interval. This model takes into account that the process of learning is contin-
uous.
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2 Continuous learning model

Let Ji be any arbitrary job with the basic processing time of p̄i and let ϕ be a posi-
tive, non-increasing and Riemann integrable function. The actual processing time of Ji
assigned to machine M is equal to

pi =

∫ L(M,Si)+p̄i

L(M,Si)
ϕ(s) ds,

where Si is the starting time of the job and L(M,Si) is the sum of basic processing times
of jobs executed on machine M up till the moment Si.

During the presentation, we will illustrate the proposed model by a number of various
examples.

3 Results

For the continuous learning model the following properties are hold.

Property 1 The general problem of parallel-machine scheduling of jobs with continuous
learning effect is NP-hard.

Property 2 If we apply continuous learning model to problems of scheduling jobs with
unit basic processing times, then the proposed model reduces to classical unit jobs schedul-
ing with position-depenedent processing times. In this case

pj,r =

∫ r

r−1
ϕ(s) ds = ϕ̄(r)

for some discrete and non-increasing function ϕ̄ of r.

The case of scheduling unit and position-dependent jobs with learning effect was analysed
in detail in [8].

Property 3 If c =
∫∞

0 ϕ(s) ds < ∞, then for any scheduling problem the optimal Cmax

value is less than or equal to c.

Before we formulate the next two results, we need to introduce some definitions.
We will call a schedule a continuous schedule, if no machine is idle until all the jobs
assigned to it are executed. Let Λ(T, ϕ) be a function of a continuous schedule and
a learning function that transforms a feasible and continuous schedule T of jobs with
fixed processing times into a feasible schedule within a model of continuous learning.
The algorithm of such a transformation will be presented and is a part of [7].

Theorem 4 Let ϕ be any positive, non-increasing and Riemann integrable function and
let I be an arbitrary instance of the P|prec|Cmax or the P|prec, pmtn|Cmax problem. If
algorithm A generates an optimal schedule T for I and it is a continous schedule, then
T ′ = Λ(T, ϕ) is a corresponding schedule optimal within the continuous learning model.

Corollary 5 Let ϕ be any positive, non-increasing and Riemann integrable function and
let I be an arbitrary instance of the P|pmtn|Cmax problem. As McNaughton’s algorithm
generates an optimal schedule T for I and it is a continous schedule, the T ′ = Λ(T, ϕ)
schedule is a corresponding schedule optimal within the continuous learning model.
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Interactive Decision Support for Multi-Goal Operating
Theater Scheduling With Different Planning Horizons

Michael Helmling (Speaker) Sebastian Velten

1 Introduction
We consider scheduling of elective surgeries for a set of operating theaters [1]. Our goal
is to interactively support surgery scheduling decisions in the following use cases:

Long-term planning: A patient needs a surgery appointment within a given time
window, which typically lies at least a few days in the future.

Next day’s schedule: After the set of surgeries of the upcoming day has been fixed,
they can be rearranged in order to improve the plan with respect to multiple goals
(e.g. distribution of workload to theaters or minimization of (expected) delays).

On-line planning: Using live data on the as-is state of current surgeries, propose
(small) reschedulings to prevent overtimes or cancellations.

Because surgery planning decisions are generally driven by several objectives, not all
of which can be integrated into a formal model but instead reside in the planner’s op-
erational know-how, interactivity is a major requirement. The system should propose
several alternatives and / or allow to evaluate the impact of modifications to the cur-
rent schedule. We explicitly do not strive to optimize for one single, definite objective
function.

Besides the operating theaters, we take arbitrary limited resources such as surgeons,
nurses, and special equipment into account by allowing each surgery to specify any num-
ber of resource requirements of the form “need k resources among the set {r1, . . . , rn}”.

Constraint programming (CP) (see e.g. [5]) techniques are employed both for mod-
elling and solving the scheduling problems. For each of the abovementioned use cases,
a customized search algorithm operating on a common CP model explores the solution
space and collects a set of scheduling proposals which are then returned to the user for
interactive decision making.

2 The CP Model
We briefly describe the CP variables and constraints used to model our problem.

{michael.helmling, sebastian.velten}@itwm.fraunhofer.de. Fraunhofer Institute for
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2.1 Surgeries
A point in time is specified by a pair t = (d, τ) ∈ N× 1, . . . , T , i.e., the τ -th time slot of
day d, where T is the number of slots per day. For a surgery s that can potentially be
performed on days Ds ⊂ N, the following CP variables and constraints are created:

• for each d ∈ Ds, an optional interval variable [4] Id
s with 1 ≤ start(Id

s ) ≤ end(Id
s ) =

start(Id
s ) + duration(s) ≤ T , and a binary indicator variable pd

s representing the
“performedness” of Id

s ,

• if the surgery must not be performed during an interval [(d, τ1), (d, τ2)], a no overlap
constraint of Id

s with the fixed interval [τ1, τ2],

• the constraint ∑
d∈Ds

pd
s = 1.

Id
s represents the execution time of s on day d, and the constraint enforces that s is
performed on exactly one day.

2.2 Resource Requirements
If surgery s requires n resources among a resource set R, the CP model is augmented
by the following entities:

• for each r ∈ R, optional interval variables Id
r,s for d ∈ Ds with the same duration

and bounds as the Id
s above and performedness indicators pd

r,s,

• if r ∈ R is unavailable from (d, τ1) to (d, τ2) with d ∈ Ds, a no overlap constraint
of Id

r,s with the fixed interval [τ1, τ2],

• for d ∈ Ds, the constraint ∑
r∈R p

d
r,s = pd

s · n which ensures that the resource
requirements are met,

• a cover constraint enforcing that all performed intervals among the set ⋃
d∈Ds

Id
s ∪⋃

d∈Ds

⋃
r∈R I

d
r,s start and end at the same time.

Finally, for each resource r, each day d and all surgeries s ∈ S in which r potentially
participates on day d, a temporal disjunctive constraint on ∪s∈SI

d
r,s forbids that the

resource is simultaneously occupied by more than one surgery.

2.3 Planning Objectives
Planning objectives, such as preference for a specific time or specific resources, can be
added explicitly to the model by introducing a binary indicator variable and constraining
its value to 1 if and only if the respective objective is met. These indicator variables are
used by the search as described below.

3 Search Strategies
Our general approach is to mimic the searching procedure of a human planner, while
the strength of constraint propagation and reasoning allows to quickly detect infeasible
choices and quickly process a huge number of alternatives.
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A CP solver explores the search space by a tree of decisions, each of which narrows
down the domain of one or more variables. It is common to group these decisions into
search phases that each cover a particular class of decisions, such that one can describe
the search more abstractly by a sequence of search phases, each of which internally might
consist of multiple individual decisions.

In long-term planning mode, the first search phase sets the day of s by fixing the
respective pd

s to 1. The potential days Ds are sorted in such a way that more preferred
days are instantiated first. The next search phase further subdivides the selected day,
where, similar to the first phase, preferred time intervals (if any time preference is given)
are tested first. After that, the third phase choses the operating room (being the most
critical resource). The fourth search phase fixes the exact time of the surgery. In
order to avoid gaps in the schedule, only that times are considered that let the surgery
immediately follow, or be immediately followed by, either another surgery or a calendar
boundary (unless a schedule with gaps is the only feasible option). Finally, the remaining
resources are assigned in the fifth phase, once again sorted by descending preference.

The search for the remaining use cases is designed in a similar fashion.

3.1 Selection of Solution
In order to obtain a limited number of structurally distinct proposals, we attach a nested
solution count limit to each search phase: the maximum number of solutions per day,
per time of day, per surgery room etc. can be limited independently of each other.
Additionally, the minimum number of achieved objectives is constantly updated to a
configurable fraction of the maximum among the current solutions, which reduces the
remaining search space and excludes irrelevant proposals.

4 Implementation Within a Commercial Software Tool
The model and search strategies have been implemented as a component for a commercial
health care scheduling software [2] that is currently in pilot phase. It allows the planner
to work interactively with the solver to find a schedule that best meets the requirements.
For the CP parts, we rely on the generic constraint solver from the or-tools suite [3].
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To Augment or Not to Augment:

Solving Unsplittable Flow on a Path by Creating Slack

Fabrizio Grandoni∗ Tobias Mömke (Speaker) † Andreas Wiese ‡

Hang Zhou§

1 Introduction

In the Unsplittable Flow on a Path problem (UFP) we are given an undirected path
G = (V,E), with edge capacities u(e) ∈ N for e ∈ E. Furthermore, we are given a
set T of n tasks. Each task i ∈ T is specified by a subpath P (i) between the start
(i. e., leftmost) vertex s(i) ∈ V and the end (i. e., rightmost) vertex t(i) ∈ V , a demand
d(i) ∈ N, and a profit (or weight) w(i) ≥ 0. Our goal is to select a subset T ′ ⊆ T of
tasks of maximum total profit such that for each edge e the total demand of the selected
tasks using e does not exceed u(e).

UFP attracted a lot of attention in the last few years in the approximation algorithms
community. The problem admits a QPTAS [2, 5] which (in some non-trivial sense) builds
up on a QPTAS for the rooted case of the problem, where all tasks share a common edge.
The existence of a QPTAS gives some evidence that UFP might indeed admit a PTAS:
finding it is considered as a challenging open problem in the area.

In terms of polynomial-time approximation, the first non-trivial result was an
O(log n)-approximation by Bansal et al. [3]. To achieve that, Bansal et al. reduced
the general case to the rooted case of the problem and provided an O(1)-approximation
for the latter. After an improvement to (7 + ε)-approximation by Bonsma et al. [6], the
current best approximation ratio is 2 + ε due to Anagnostopoulos et al. [1].

Traditionally, tasks are classified into large and small tasks. A task i is δ-large if
there is an edge e ∈ P (i) such that d(i) ≥ δ · u(e) and δ-small otherwise. All previous
polynomial time approximation algorithms for the problem and its special cases [7, 8,
9, 1, 6] essentially treat these two groups separately, which inherently lose a factor of
2 in the approximation ratio. It is challenging to handle the two groups in a combined
way by a polynomial time algorithm. This can be seen from the fact that the ratio of
2 + ε is the best known polynomial time result even for the special case of uniform edge
capacities [4, 7, 11] and for the mentioned rooted case. No better result is known even
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under resource augmentation, i. e., if we are allowed to increase the capacity of all edges
by a factor 1 + ε and the compared optimal solution does not have this privilege.

1.1 Our Results and Techniques

In most prior work on UFP the tasks are classified into large and small tasks as defined
above, based on the input alone. The sparsification lemma by Batra et al. [5, Lemma 3.1]
allows us to deviate from this path. Let OPT be the optimal solution. For each edge e,
consider the 1/ε tasks in OPT with largest demands using e. We call those tasks locally
large. Note that this definition depends on OPT. The sparsification lemma states that
for any κ ∈ N one can globally remove a set of tasks with total weightO(κε)·w(OPT) such
that for each edge e at least κ of its locally large tasks are removed. Then, intuitively, in
a dynamic programming approach the remaining locally large tasks can be guessed and
the gained slack can be used to simplify the computation for the locally small tasks.

In this paper we push this approach further. By using the sparsification lemma we
remove κ = 2/ε4 out of the 1/ε5 largest tasks on each edge e. Then each locally small
task on an edge has a very small demand compared to the gained slack. If a task is
locally small on all of its used edges we call it shrinkable. Using LP-based arguments
(critically using that such tasks are locally very small) we reduce the total demand of
the shrinkable tasks on each edge by a factor 1 − ε while losing only a factor 1 + O(ε)
in the total profit. Hence, we sacrifice on each edge e some fraction of both the locally
large and locally small tasks.

From the point of view of the shrinkable tasks, the available capacity on each edge
is by a factor 1 + Θ(ε) larger than the actually needed capacity. In some informal sense,
we use this to achieve the following goal. We start with an approximation algorithm
in the resource augmentation setting, where the computed solution is allowed to violate
edge capacities by a factor 1 + ε (while comparing the profit with the optimal solution
that cannot do this). Then we transform it to an algorithm that up to a factor 1 +O(ε)
achieves the same approximation ratio without resource augmentation.

Typically, resource augmentation helps substantially when designing approximation
algorithms. Unfortunately, a resource augmentation PTAS for the general case of UFP
is not known. Still, we believe that this is a much easier task than achieving (directly) a
PTAS without resource augmentation for the same problem. For instance, the additional
capacity can be used to round and discretize the demands of tasks, or to allow errors
when estimating the required capacities for subsets of tasks (a common step for small
tasks of a given instance). Meanwhile, we achieve PTASs for the following special cases
and variants of UFP:
• We design a resource augmentation PTAS for the rooted case of UFP, and from

there we derive a PTAS for the setting without resource augmentation. We recall
that here all task subpaths share a common edge, and the previous best approxi-
mation algorithm for this case was the (2 + ε)-approximation for the general case.
As an extension, we also obtain a PTAS for the case that all tasks use at least
one out of a subset of O(1) edges. In turn, this PTAS can be used to obtain a
PTAS for the non-containment case of the problem, where no two tasks i, j satisfy
P (i) ⊆ P (j).
• We consider an unlimited-supply case of UFP (unl-UFP), where we are allowed

to include multiple copies of the same task in the solution. This is motivated by
scenarios where each task models a type of client, and there are many clients of
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each type (enough to saturate the edge capacities). To the best of our knowledge,
this unlimited-supply notion was not addressed before in the framework of UFP,
while it is common in some related pricing problems [10]. We first design a resource
augmentation PTAS for unl-UFP via a structural lemma that shows that there are
near-optimal solutions in which the small tasks are chosen in bundles. Using the
same technique as before, we then obtain a PTAS without resource augmentation.
• We obtain a PTAS for the special case of UFP where the profit of each task i

is proportional to its area d(i) · |P (i)| (area-UFP). This special case is also well-
motivated: for example, considering P (i) as a time interval as mentioned before,
d(i) · |P (i)| can be interpreted as the total volume of the considered resource used
to process task i (hence it makes sense to charge i by that amount). In this case
the PTAS with resource augmentation is already quite involved and requires some
careful charging arguments. We obtain a PTAS without resource augmentation
using the same technique.
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A priori TSP in the Scenario Model

Martijn van Ee (Speaker) ∗ Leo van Iersel † Teun Janssen ‡

René Sitters §

1 Introduction

In a priori routing, we extend our classical routing problems to the case that the set of
clients is uncertain or changes regularly. Because reoptimizing might be inconvenient or
impossible, we want to find a single tour. Given a tour and a set of clients, the active
set, we shortcut the tour to the active set and we want to minimize the expected length
of the resulting tour.

Formally, in the a priori traveling salesman problem in the scenario model, we are
given a complete weighted graph G = (V,E) and a set of scenarios S with S1, . . . , Sm ⊆
V . Scenario Sj has probability pj of being the active set, where

∑
j pj = 1. We begin

by finding an ordering on V , called the first-stage tour. When an active set is released,
the second-stage tour is obtained by shortcutting the first-stage tour on the vertices of
the active set. The goal is to find a first-stage tour that minimizes the expected length
of the second-stage tour.

This problem has, for example, a direct application to the photo-lithography pro-
cesses used in semi-conductor manufacturing to transfer the geometric pattern of a chip
onto a wafer [1]. This is done by putting UV light through a photomask on a photoresis-
tant layer on top of the wafer. The entire wafer is not exposed at once, but one square
at a time. If certain parts of the square do not need to be exposed, blades are moved
in to block the UV light. Moving the blades is a time-consuming, and hence costly,
process. Since it often influences the total processing time of a wafer in the lithography
machine, minimizing the distance reduces the processing time. The blading positions
are defined in a file. The blading positions are obtained from this file by reading it from
top to bottom and the positions are used by the machine in order of appearance. A
product will visit the photolithography machine multiple times during its fabrication.
Every time it will use the same file that defines its blading positions, but it will not use
all blading positions defined in the file in every visit. For each visit, there is a given
subset of the blading positions that has to be used. Hence minimizing the movement of
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the blades comes down to finding an ordering of the blading positions such that the sum
over all visits of the total distance between the blading-positions is minimized.

A priori TSP has already been considered in the independent decision and black-
box model. In the independent decision model, vertex i is active with probability pi,
independent of the other vertices. Shmoys and Talwar [7] showed that a sample-and-
augment approach gives a randomized 4-approximation, which can be derandomized to
an 8-approximation algorithm. In the black-box model, we have no knowledge on the
probability distribution over the vertices, but we are able to sample from it, i.e. to
query the probability of any subset of the vertices. Schalekamp and Shmoys [6] showed
that one can obtain a randomized O(log n)-approximation even without sampling. It
was shown by [4] that there is an Ω(log n) lower bound for deterministic algorithms on
general metrics.

The former results give us the first results for a priori TSP in the scenario model.
First of all, we inherit the randomized O(log n)-approximation. Secondly, we know that
a deterministic algorithm that does not use the information given in the scenarios will
not achieve an approximation guarantee better than O(log n). The main question is
whether we can use the scenarios to improve upon the O(log n) upper bound and which
restrictions we can put on the scenarios in order to obtain constant-factor approxima-
bility. Here, we show that the problem is already difficult when the scenarios are small.
We also show positive results when there is a constant number of scenarios, when the
scenarios are big and when the scenarios are nested. An extended version of this abstract
appeared in [2].

2 Small scenarios

We show that a priori TSP in the scenario model is already hard when |Sj | ≤ 4 for all
j by reducing from Max Cut. Note that the problem is trivial when |Sj | ≤ 3 for all j.

Theorem 1 A priori TSP is NP-complete when |Sj | ≤ 4 for all j.

We can use the same reduction to show inapproximability results. We can strenghten
these by assuming the Unique Games Conjecture (UGC).

Theorem 2 There is no 1.0117-approximation for a priori TSP with |Sj | ≤ 4, unless
P=NP, and no 1.0242-approximation under UGC.

By using strong results on the inapproximability of Permutation CSPs [5], we can
improve our results for larger scenarios.

Theorem 3 Under UGC, there is no α-approximation for a priori TSP with

(a) α < 10
9 when |Sj | ≤ 6,

(b) α < 7
6 when |Sj | ≤ 8,

(c) α < 71
60 when |Sj | ≤ 10.

A related question is whether there is a tour such that if we shortcut on the vertices
of a scenario, we get the optimal solution for that scenario. This problem is known as the
Master Tour problem with scenarios. It turns out that this problem is ∆p

2-complete [3].
By adjusting the proof of Theorem 1, we can prove that the master tour problem with
scenarios is NP-complete when |Sj | ≤ 5. This is done by reducing from Set Splitting
instead of Max Cut. The master tour problem with scenarios is still open for |Sj | ≤ 4.
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3 Other results

We were able to prove constant-factor approximability for certain special cases. The
algorithm that solves (approximates) TSP for each scenario and than concatenates the
m subtours is a (2m − 1)-approximation. One might either concatenate the tours in
non-increasing order of their lenghts or in non-decreasing order of their probabilities.

Theorem 4 There is a (2m−1)-approximation for a priori TSP in the scenario model,
where m ≥ 2 is the number of scenarios.

The optimal solution on the entire set of vertices is a good approximation if the
scenarios are large, i.e. each scenario contains all but a constant number of the vertices.

Theorem 5 The optimal solution on V is a (1 + c
2)-approximation for a priori TSP

with |Si| ≥ n− c, where 1 ≤ c ≤ n
2 .

Finally, by carefully choosing a collection of subtours to concatenate, we can prove
a 9-approximation if the scenarios are nested.

Theorem 6 There is a 9-approximation for nested scenarios, i.e. when S1 ⊆ . . . ⊆ Sm.
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[3] Martijn van Ee and René Sitters. On the complexity of master problems. In Pro-
ceedings of the 40th Symposium on Mathematical Foundations of Computer Science,
pages 567–576. Springer, 2015.

[4] Igor Gorodezky, Robert D. Kleinberg, David B. Shmoys, and Gwen Spencer. Im-
proved lower bounds for the universal and a priori TSP. In Proceedings of the 13th
International Workshop on Approximation Algorithms for Combinatorial Optimiza-
tion Problems, pages 178–191. Springer, 2010.

[5] Venkatesan Guruswami, Johan H̊astad, Rajsekar Manokaran, Prasad Raghavendra,
and Moses Charikar. Beating the random ordering is hard: Every ordering CSP is
approximation resistant. SIAM Journal on Computing, 40(3):878–914, 2011.

[6] Frans Schalekamp and David B. Shmoys. Algorithms for the universal and a priori
TSP. Operations Research Letters, 36(1):1–3, 2008.

[7] David B. Shmoys and Kunal Talwar. A constant approximation algorithm for the
a priori traveling salesman problem. In Proceedings of the 13th International Con-
ference on Integer Programming and Combinatorial Optimization, pages 331–343.
Springer, 2008.

136



Container Dispatching and Conflict-Free Yard Crane

Routing in an Automated Container Terminal

Dirk Briskorn (Speaker) ∗ Jenny Nossack † Erwin Pesch ‡

1 Introduction

We consider a crossover gantry crane setting managing a single container block in a
seaport container terminal. Two cranes spanning the width of the whole block move
on tracks alongside the block. Since they differ in height and width they can pass each
other unless the taller crane has its spreader lowered.

We consider a 1-dimensional model of the block only, see also [1], focussing on moves
of cranes affecting the whole gantry since these are most time-consuming and can be
conducted in parallel to moving the trolley along the gantry. The spreader can be
lowered only when gantry and trolley do not move and, therefore, can be represented
by pickup times and dropoff times for transport requests. We distinguish between three
types of transportation requests, namely inbound requests, outbound requests, and so-
called housekeeping requests, see [4]. Origin and destination of a request are typically
determined beforehand by a pre-executed stacking algorithm, see [3].

In our problem setting, we address the set of dual cranes K := {1, 2} where 1
represents the taller crane and 2 the smaller crane. The block bays are denoted by
Q := {0, . . . , l} and the set of transportation requests by R = {1, . . . , n}. The origin
location of each request i ∈ R is denoted by Oi ∈ Q and the destination location by
Di ∈ Q. The service times at the origin and destination are represented by sOi ∈ N0 and
sDi ∈ N0 for each request i ∈ R, respectively. The minimum travel time from the origin
Oi to its destination Di of request i is represented by ti,i and is set to ti,i := |Oi −Di|.
Similarly, the minimum travel time from the destination Di of request i to the origin Oj

of request j is denoted by ti,j and is defined by ti,j := |Di −Oj |. Furthermore, parameter
Sk ∈ Q denotes the initial location of crane k ∈ K.

The CCSP is to assign requests to cranes such that each request is dispatched to
exactly one crane. For a given dispatch we, furthermore, consider a permutation of the
associated requests. We refer to permutations of requests for both cranes as a work
plan. For a given work plan, a schedule for a crane is the position of the crane over
time such that the position is a continuous function (in time) with slope in −1, 0, 1 and
the crane follows the work plan, i.e., it visits the origin and destination locations in the
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order implied by the work plan and is present in the respective locations long enough to
conduct the corresponding operations. Note that the bounds on the slope of the function
reflect the maximum speed of cranes of at most one bay per time unit. A conflict-free
pair of schedules guarantees that at each point of time when crane 1 is operating in bay
b, crane 2 is located in bay b′ with b′ ≤ b − 1 or b′ ≥ b + 1. A feasible solution gives a
work plan and a conflict-free pair of schedules. The makespan of a feasible solution gives
the point of time the last container is served at its destination location. The CCSP is
to find a feasible solution having minimum makespan.

2 Computational complexity and solution approach

NP-hardness of the CCSP is rather obvious due to, for example, individual service times
of requests and the similarity of CCSP and problem P2||Cmax to schedule jobs on two
parallel machines. However, we can show a stronger result.

Theorem 1 The decision version of CCSP is strongly NP-complete even if l ≤ 5.

We only sketch the proof here. It is by reduction from 3-PARTITION. The idea is to
design an instance such that the taller crane is forced to conduct very time consuming
pickup operations in fixed time intervals in bay b. The smaller crane, therefore, can pass
b only in narrow time intervals and has to have a partition of its requests on both sides
of b. The partition implies a yes-certificate to the instance of 3-PARTITION if and only
if a given makespan can be reached. Membership in NP on the other hand can be shown
using the result from [2] enabling us to employ sequences of requests assigned to both
cranes as certifier. The graph-based approach developed in [2], then, can be used in
order to determine the optimum right of way in case of conflicting requests in strongly
polynomial time.

In order to tackle CCSP we develop a decomposition approach making use of the
efficient approach in [2], as well. The basic idea of this decomposition approach is to
partition a problem into a master and a subproblem while connecting them via logic-
based Benders constraints. Based on cutting plane methods, it then approximates the
feasible set of the master problem by only a subset of the constraints. If the resulting
solution is infeasible, additional constraints are added. The subproblem operates as
separation problem and either proves global optimality of a solution or detects violated
constraints reflecting a lower bound on the makespan imposed by the optimum positions
over time for given sequence of requests.

We base our master problem on a vehicle routing formulation (refer, e.g., to [5])
and introduce a binary decision variable ykij which denotes whether or not request j is

conducted after request i by crane k ∈ K. Furthermore, variable W ∈ R+
0 identifies the

makespan. For simplicity, we treat the initial states of crane 1 and 2 as requests 01 and
02, respectively, and thus define t0k,i :=

∣∣Sk −Oi

∣∣, t0k,0k := 0, sO0k := 0 and sD0k := 0 for
all k ∈ K and i ∈ R. Note that we also require a dummy request (denoted by n + 1) to
simulate that a crane ends its route at the destination location of its last request.

minW (1)

∑

i∈R∪{n+1}
yk0k,i = 1 ∀k ∈ K (2)
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∑

k∈K

∑

i∈R∪{0k}
i 6=j

yki,j = 1 ∀j ∈ R (3)

∑

j∈R∪{n+1}
i 6=j

yki,j −
∑

j∈R∪{0k}
i 6=j

ykj,i = 0 ∀i ∈ R; k ∈ K (4)

∑

i,j∈S
i 6=j

yki,j ≤ |S| − 1 ∀S ⊆ R ∪ {0k} ; k ∈ K (5)

∑

i∈R∪{0k},j∈R
i 6=j

yki,j · (ti,i + ti,j + sOi + sDi ) ≤W ∀k ∈ K (6)

Ŵ h(1−
∑

k∈K

∑

i,j∈Jh
k

(1− yki,j)) ≤W ∀h ∈ H (7)

yki,j ∈ {0, 1} ∀i ∈ R ∪ {0k} ,
j ∈ R ∪ {n + 1} , i 6= j; k ∈ K (8)

W ∈ R+
0 ∀k ∈ K (9)

The objective function (1) minimizes the makespan. Equations (2) ensure that both
cranes start at their initial location. Constraints (3) to (5) ensure feasible sequences of re-
quests. Constraints (6) guarantee that the makespan equals the maximum finishing time
of both cranes. Constraints (7) are logic-based Benders constraints that are obtained
by solving the subproblem and bound the makespan from below. Finally, constraints
(8) and (9) define the domains of the decision variables. We obtain encouraging results
using the branch-and-cut approach as an exact method and a heuristic, respecitvely,
tackling instances with up to 40 transport requests.
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A FPTAS of Minimizing Total Weighted Completion Time

on Single Machine with Position Constraint

Gruia Cǎlinescu ∗ Florian Jaehn † Minming Li (Speaker) ‡ Kai Wang §

1 Introduction

In general, a major challenge of scheduling problems is the determination of a job se-
quence for each machine involved. Especially in non-preemptive one machine settings
without idle times, this is usually the only task to be performed. In this context, schedul-
ing problems appear without restrictions on this sequence (e.g. 1||∑Tj) and with restric-
tions on the sequence (e.g. 1|rj , prec|

∑
Cj). Restrictions on the sequence are commonly

either time dependent or linked to job pairs. Examples for time dependent restrictions
are release dates, deadlines, or time dependent maintenance activities. Precedence con-
straints are a typical restriction based on job pairs. In this paper, we elaborate on a
different restriction based on the position of a job in the sequence. To be more precise,
we force one job to have a fixed position within the sequence of jobs.

The practical and theoretical motivation for such a scheduling problem is twofold.
Firstly, such a job that has a fixed position in the sequence could be considered as a
maintenance operation. Classically, maintenance is also considered to be time dependent,
e.g. by modeling predetermined machine unavailability intervals ([1, 2, 3]), by allowing a
maximum time between two maintenances, which is often referred to as “tool changes”
([4, 5]), or maintenances may be inserted arbitrarily in order to reduce the processing
times of following jobs ([6, 7]). However, just lately, position dependent maintenance
operations have been introduced by [8]. Amongst others, they motivate position depen-
dent maintenance activities with wear and tear of jet engines or aircraft wheels, which
is rather caused by the number of flights (because of the climb flight and thrust reversal
for the engines) than by the length of the flight. So the problem considered here can be
seen as the special case in which exactly one position dependent maintenance activity is
necessary.

Secondly, our problem is a special case of scheduling with nonnegative inventory
constraints, as it was introduced by [9]. Here, each job either delivers or removes items
of a homogeneous good to or from an inventory. Jobs that remove items can only be
processed if the required number of items is available, i.e. only if the inventory level does
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not become negative. This problem relates to ours, in which a job is fixed to position
k, as follows. The job fixed on position k can be considered as the only job removing
items from the inventory, and k− 1 jobs are required to deliver items before this job can
be scheduled. If the parameter settings of the fixed job are chosen such that this job is
to be scheduled as early as possible, it is forced to be on position k. Analogously, the
fixed job can be modeled as the only one delivering to the inventory so that it must be
scheduled the latest on position k. Parameter settings then need to ensure that it is not
scheduled earlier.

In this paper we continue the work of [9] on problem 1|inv|∑wjCj .

Formulation The instance of the problem is a set of n jobs J = {1, 2, ..., n}, a specified
job c ∈ J and an integer k ∈ [1, n]. Each job j ∈ J is defined by its weight wj and
its processing time sj . The goal is to find a schedule that minimizes total weighted
completion time on single machine such that there are exactly k − 1 jobs scheduled
before job c, where k is part of the input.

In classical Smith’s Rule [10], jobs are executed in non-decreasing order of the ratios
wj/sj . And Smith’s Rule has been proven to be optimal when there is no position
constraint of job c.

Theorem 1 In the optimal solution, jobs that are scheduled before (or after) job c must
follow Smith’s order.

Approach & Result So far, we were not able to detect any complexity result of this
problem. We give a FPTAS of this problem, however it still remains open that whether
this problem is NP-hard or not.

To tackle this problem, we first give pseudo-polynomial dynamic programming algo-
rithms to solve this problem, which is polynomial on job processing time or job weight,
respectively. Given ε as the parameter of the FPTAS, we round the jobs to integer
values according to ε such that the job processing time (resp. weight) is polynomial on
n and 1/ε. Therefore, the dynamic programming has polynomial running time, and the
major issue is to analyze the performance of the dynamic programming. We discover
that, a single dynamic programming may not have a good performance. Therefore in the
FPTAS algorithm we construct a set of dynamic programmings based on intermediate
result and shows that the algorithm is (1 + 2ε)-approximation, with time complexity
O(n13/ε4).

2 PTAS Algorithm

Dynamic Programming with Side Constraints Given integer k, job c ∈ J and
sets of jobs J , H ⊂ J \ {c}, B ⊂ J \ {c} such that H ∩ B = ∅, we propose a pseudo-
polynomial dynamic programming to find the optimal schedule such that:

1. jobs from H are scheduled before job c, and

2. jobs from B are scheduled after job c, and

3. there are exactly k − 1 jobs scheduled before job c.

Jobs H ∪B are said to be assigned and let U = J \ (B∪H ∪{c}) be the unassigned jobs.
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Rounding on Job Processing Time Given ε, let λ := poly(n, 1/ε) be a variable
polynomial on n and 1/ε , we round the job processing time by a factor λ, ∀j ∈ J, s′j =

dsj · λ
smax
e, where smax varies during the iteration of the algorithm.

Algorithm The algorithm has many rounds, in each round we fix the position of a
job accordingly and start over (solve the problem without this job accordingly) unless
we reach the termination of the algorithm. In each iteration of current round, we have
some assigned jobs and unassigned jobs. We keep assigning the unassigned jobs to be
before or after job c until we reach the termination of current round. In each iteration,
we take the best of the solution from the dynamic programmings.
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Linear-Time Approximation for Minimum Subset Sum and

Subset Sum

Liliana Grigoriu ∗

1 Introduction

The minimum subset sum problem and the subset sum problem appear often as parts
of solutions for scheduling problems, see for example [4]. We present a family of approx-
imation algorithms for minimum subset sum with a worst-case approximation ratio of
1+1/k and which run in linear time assuming that k is constant. We also present a family
of linear-time approximation algorithms for subset sum with worst-case approximation
factors of 1−1/(k+1) assuming that k is constant. The algorithms use approaches from
and improve upon previous literature, where a linear-time 4/5 approximation algorithm
for subset sum and a linear-time 5/4 approximation algorithm for minimum subset sum
have been provided by Kellerer et al. [7] and by Grigoriu and Briskorn [4] respectively.
The maximum number of times a linear-time procedure could be called within the algo-
rithms, which depends on k, is determined computationally for each of the two problems
for sample values of k. For example, for k = 10, these numbers are 137 for subset sum
and 171 for minimum subset sum, and for k = 30 they are 28627 and respectively 31023.
A very loose bound for the time complexity is, for both algorithms, O(n ∗ kk), and it
can be improved to other loose bounds such as O(n ∗ (k− 1)bk/2c). The simplicity of the
algorithms allows for fast implementation, and they can be parallelized.

In [7] two linear-time 3/4 and 4/5 approximation algorithms for subset sum are
presented. Several FPTAS are known for this problem (see [6] for an overview), and
recent exact algorithms for it were presented in [1] and [8] . For the minimum subset
sum problem, a quadratic approximation algorithm with a worst-case approximation
ratio of 5/4 has been proposed in [5], and a linear-time 5/4 approximation algorithm
has been presented in [4], where it was used to solve a related scheduling problem. Also,
FPTAS for more general problems than minimum subset sum have been developed, for
example in [2]. In this work we use some ideas that were also used in [7] and [4]. Next,
we outline the ideas used to build the algorithms for minimum subset sum.

2 Approximation algorithms for minimum subset sum

An detailed version of the results we present is given in [3]. The minimum subset sum
problem asks, given a multiset J of positive integers and a target sum S which subset of
J has elements that add up to a sum that is at least S and as close as possible to S. To
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obtain an approximation algorithm that solves the minimum subset sum problem with
a worst-case approximation factor of (k + 1)/k, we first divide the set J into disjoint
subsets as follows:

Ji = {j ∈ J |(i− 1)
S

k
≤ j <

iS

k
} and Jl = {j ∈ J |j ≥ S}.

The main algorithm, which has a worst-case approximation factor of (k+ 1)/k, uses two
subroutines. The subroutine AddJ1(K) adds, if necessary, elements from (the globally
visible set) J1 to a set of jobs K ⊆ J \ J1 with S −∑j∈J1 j ≤

∑
j∈K j ≤ k+1

k S until
the sum of the elements in K is at least S. Then, AddJ1(K) returns the resulting set
K, which has the property that the sum of its elements is at least S and at most k+1

k S,
as all elements of J1 are less than 1

kS. The second subroutine Candidate(K,Kbest)
updates the best found solution Kbest with a newly found solution K if K is better.
Here, we assume that the procedure can change Kbest. We denote with mini(Jh) and
with maxi(Jh) the sets of elements with the i smallest and respectively with the i largest
values from Jh (with ties broken arbitrarily). The definition assumes that there are at
least i elements in Jh. Any solution that contains an element of Jl is not better than
the solution min1(Jl), which our algorithm will check separately. Any other solution
contains a number ni of elements from Ji for i ∈ {2, 3, . . . , k}, and possibly elements
from J1. We call a tuple (n2, . . . , nk) configuration of all subsets of J \ Jl that contain
exactly ni of elements from Ji for all i ∈ I, where I = {2, 3, . . . , k}. Our algorithms
build sets Q of elements from J \ J1 which fulfill one of the following conditions:

1. it can be proved that they are a k+1
k approximation for the problem instance

2. they can be the optimal solution

3.
∑

i∈Q i < S and
∑

i∈Q i+
∑

i∈J1 i ≥ S. Here, a solution can be obtained by adding
elements from J1 to Q until the sum of elements in Q reaches or exceeds S, at which
point we have S ≤∑i∈Q ≤ k+1

k S, which implies that Q is a k+1
k approximation of

an optimal solution as desired.

We consider all configurations an optimal solution or a (k + 1)/k approximation
thereof can have, which are described as follows[3]. The item with the smallest value
from Jl is considered as a candidate solution. If, in addition to that, all configurations
of interest (n2, . . . , nk), that is, those which fulfill all of the following properties, are
checked, either an optimal solution or a (k + 1)/k approximation thereof is found:

1. (a)
∑

i∈I i · ni +
∑

j∈J1 j ≥ S. In addition, we must have
(b)

∑
i∈I
∑

j∈maxniJi
j +

∑
j∈J1 j ≥ S.

2.
∑

i∈I(i− 1)ni < k + min{q|nq > 0} − 1.

Here, checking a configuration means that relevant solutions that correspond to these
configurations are found and returned if they are known to be a (k+1)/k approximation
or stored as a candidate if they may be the optimal solution.

We next present the procedure CheckConfiguration that considers each configuration
of interest T = (n2, . . . , nk). We assume that k, the number sumJ1 =

∑
j∈J1 j, the sets

J1, J2, . . . Jk and the current best candidate solution Kbest are globally visible and can
be accessed and changed by the procedure:
CheckConfiguration(T)
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(0) Let I = {2, 3, . . . , k}, let Q′ = ∪i∈ImaxniJi and Q = ∪i∈IminniJi; (if for some i ∈ I,
Ji does not contain ni elements return ∅;)
(1) If (

∑
j∈Q′ j + sumJ1 ≥ S){

(2) If (
∑

j∈Q j ≥ S){
(a) candidate (Q, Kbest);
(b) If (

∑
j∈Q j ≤ k+1

k S) return Q; // this step is optional
(c) return ∅;

}
(3) Else {
(a) If

∑
j∈Q ≥ S − SumJ1, return AddJ1(Q);

(b) For all i ∈ I do: Iteratively replace in Q elements of minniJi with elements
of maxniJi until the sum of elements in Q reaches or exceeds S−SumJ1, in which case
return AddJ1(Q), or until all elements from minniJi are replaced in Q.

}
}

(4) return ∅;
The main algorithm generates all configurations of interest and calls CheckConfigura-
tion, which runs in linear time, for each one of them, in the end resulting in a 1+1/k
approximation or in an optimal solution.
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Scheduling Recurring and Optional Activities for

Radiotherapy Considering Stable Treatment Starting Times

Petra Vogl (Speaker) ∗ Roland Braune ∗ Karl F. Doerner ∗

1 Introduction

We consider the scheduling of recurring treatment activities for patients diagnosed with
cancer in a radiotherapy treatment facility. A radiation therapy consists of a pre-
treatment phase and the treatment phase itself, which in turn consists of multiple daily
treatment activities (DTs) [2]. The treatments are performed on separate days and are
followed by various control examinations.

Scheduling radiotherapy appointments consists of (1) an assignment problem defining
the days on which treatments for a specific patient should take place and fixing the
subsequent control examinations and (2) a scheduling problem in which the exact (“to-
the-minute”) starting times of the activities are determined. The basis of our formulation
is the classic disjunctive job shop MIP model. The activity starting time of activity i of
patient p is then described by integer decision variable spi. Additionally, we incorporate
day-indexed binary decision variables dtpid in our model. dtpid equals 1 iff dwd ≤ spi ≤
dwd with dwd and dwd denoting the start and end time of day d, respectively.

Assignment For each patient p, a release time rp and a deadline dp for his first daily
treatment (FDT) is given. Additionally, for medical reasons, each patient has to receive
a minimum of four treatments within five days. This constraint significantly raises the
problem complexity: While for a patient with five planned DTs we do have 5 possible
assignments, there are 657 possibilities of scheduling DTs to days for a patient with 20
irradiation appointments. The permutations of feasible assignments of DTs to days for
one patient with nDT

p being the known number of treatments to be scheduled is defined
by Eq. 1, with hmax the maximum number of breaks allowed within a feasible DT to
day assignment:

(dp − rp)×
hmax∑

r=0

(
nDT
p − 3 · r + 2

r

)
(1)

After each DT activity, so called optional activities appear within the patient-specific
“activity chain”. For example, patients need to regularly see their assigned radio-
oncologist for a weekly control examination (WCE) and some patients additionally need
to attend imaging appointments directly after irradiation in order to evaluate the accu-
racy of treatment (PET-CT, positron emission tomography - computer tomography). It
is then for the optimization algorithm to decide, which of these optional activities take
place and which ones are omitted. We have to assure, however, that both categories
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of optional activities (i.e. WCE, PET-CT) are scheduled at least once within every five
consecutive days during the treatment phase of a patient.

Scheduling The activities within the activity chain of each patient are tied together
using minimum and maximum finish-start relations. E.g. the imaging activity may only
start maximum 15 minutes after the irradiation has finished, otherwise it would not give
the expected results. If, however, one optional activity is omitted, the time window of
the next activity to take place depends on the starting time of the previous activity.
Figure 1 visualizes this connections between the activities. The optional activities are
marked by dashed lines. While scheduling on alternative process paths has already been
studied in the literature, to the best of our knowledge, pure optional activities are a new
field of research.

i i+2i+1 i+3

FSi,i+3

FSi,i+2

FSi+1,i+3

FSi,i+1 FSi+1,i+2 FSi+2,i+3

Figure 1: Finish-Start relations among optional activities.

In order to increase convenience for patients, the start of the first activity of patient
p on each treatment day should only vary by a maximum of α per week. In order to
guarantee this, we introduce decision variable d̃spw as the imaginary stable activity time
per week w for patient p. The time at which patient p must come in on day d is denoted
by dspd and is calculated as

dspd =
∑

i∈DT
spi · dtpid − dwd ∀p, d, (2)

with DT the set of all DT activities. Eq. 3 introduces the stable time constraint with
Dw the set of days belonging to week w. Violations to this constraint – denoted by γstpd
– are to be minimized within the objective function.

|dsdp − d̃spw| − γstpd ≤ α ∀w, d ∈ Dw, p (3)

Each treatment activity requires numerous resources as well as staff capacity simul-
taneously. The bottleneck resource is considered to be the particle beam which can only
serve one out of three treatment rooms at a time. One DT activity, however, consists
of three parts: (1) A set-up time in which the patient is prepared for the treatment
(occupying the treatment room only), (2) the irradiation itself where both the beam and
the room are blocked and (3) the tear-down time during which again only the treatment
room is occupied. Further, in case different particle types are supplied successively, an
additional set-up time occurs on the beam resource.

Objective We aim at maximizing the usage of the bottleneck resource – the irradiation
beam – by trying to reduce setup effort and idle times. Simultaneously, we focus on the
minimization of penalties arising from time window violations, namely violations of the
finish-start relations between two consecutive activities and violations of the stable times
described above. Due to the complexity of the problem at hand and the lack of space in
the extended abstract, we cannot state the full mathematical model formulation here.
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2 Solution Approach

Constructive Heuristic Approaches We designed two construction heuristics that
sequentially schedule the given activities: The first heuristic schedules activities chrono-
logically, while the second heuristic allows to fill availability gaps on the resources. In
order to reduce penalties from time window violations and thereby increase feasibility,
we further apply repair strategies to the second heuristic. We use these construction
heuristics in two main ways: (1) We apply classical priority rules like “Earliest Start-
ing Time” known from the literature and (2) we schedule activities according to some
predefined and order-feasible activity list. The latter use is relevant especially for the
metaheuristic solution approaches described below, as it functions as a decoding mech-
anism of multi-encoded solutions.

The underlying chronological scheduling approach necessitates the formulation of an
LP model to evaluate stable time violation penalties after the schedule construction has
finished, since the stable time per week itself is a variable and not an input to the model
(see Eq. 3).

Metaheuristic Solution Approaches We developed a genetic algorithm (GA) as
well as a variable neighborhood search (VNS) based heuristic and a combination of
both approaches (genetic local search). The representation of one solution is defined
by a multi-encoded chromosome (see [1]) which consists of binary vectors indicating the
assignment of DT to days for each patient as well as binary encodings displaying which
optional activities to schedule and which ones to skip. Finally, a permutation vector
including all patient indices depicts the sequence in which the patients are scheduled on
each day. This encoding scheme is then transformed into an activity list which is used
by the mentioned constructive scheduling schemes to decode and evaluate the solution.

Within the GA approach, we investigate on custom feasibility-preserving crossover
and mutation operators tailored to our multi-encoding chromosome. We conclude,
that our custom day-wise crossover of the binary encodings outmatches a patient-wise
crossover approach.

The VNS process then further uses the mutation operators and focuses the search
only on parts of the multi-encoded solution. If we end up in a local optimum, we continue
the search on other parts of the solution. Finally, we combine the proposed local search
process with the genetic algorithm and thereby further intensify the optimization. We
compare the three mentioned approaches on real-world inspired problem instances for
the radiotherapy patient scheduling problem of different size (i.e. numbers of patients to
be treated).
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A Generalization of the Knapsack-Cover Inequalities for

Linear Functions With Fixed Costs

Ignacio Morales (Speaker) ∗ José Verschae †

1 Introduction

We consider a fundamental covering problem where we are given a demand D ≥ 0 and
a set J of n items that we can use to cover it. In the classical Knapsack-Cover (a.k.a
Min-Knapsack) problem, each item i has a cost ci and a value pi that determines how
much demand we cover if we choose item i to be in our knapsack. In other words,
the objective is to determine variables yi ∈ {0, 1} such that

∑
i yipi ≥ D and the cost∑

i ciyi is minimized. We consider a natural generalization of this basic question in
which each item has an additional cost gi and capacity ui. Whenever we pick item i
(which automatically covers pi units of demand), we must decide for an extra amount
of zi units of demand to cover, each unit costing gi. Variable zi can take any fractional
value within [0, ui]. In this context we must find a solution minimizing

∑
i ciyi + gizi

satisfying
∑

i yipi + zi ≥ D. We denote this problem as Knapsack-Cover with Fixed and
Variable cost (KCFV).

Our main motivation comes from the Unit Commitment Problem (UCP), a promi-
nent problem in the operations of power systems. In its most basic version, a central
planner, called Independent System Operator (ISO) must schedule the production of
energy from a given set of resources (power plants) in order to satisfy a given demand.
A common issue in this setting is that resources incur fixed costs for making the resource
available, and after the resource is available a minimum amount of energy must be pro-
duced. For the case of one time period, the problem corresponds exactly to KCFV if
the production cost scales linearly with power (after paying the fixed cost).

Related Work. Carr et al. [4] studied the Knapsack-Cover problem from a poly-
hedral perspective and derived a set of inequalities called knapsack-cover inequalities
(KC-inequalities) that give an integrality gap of 2 when applied over the obvious IP-
formulation. This set of inequalities have proven very useful in a myriad of different
covering problems. This include, for example, the General Scheduling problem with [1]
and without [5] release dates, and the special case corresponding to the unsplittable
flow-cover problem on a path [2, 6].

Carnes and Shmoys [3] consider a similar setting to ours, with the difference that
the pi’s are all zero, and derive a generalization of the KC-inequalities for this setting,
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which then apply to the more general capacitated single-item lot-sizing problem. They
obtain an elegant 2-approximation algorithm for this setting via a primal-dual schema.

2 Our Results

We extend the generalized KC-inequalities by Carnes and Shmoys [3] to the KCFV
problem, yielding a (2 + ε)-approximation based on LP-rounding. The basic idea of the
original KC-inequalities arise by the following thought experiment: assuming that we
have already selected a set A ⊆ J of items for our knapsack, how can the remaining
items cover the remaining demand? If A is already selected, we have a residual demand
of D(A) = D −∑j∈A pj , and an item i ∈ J \ A can have pi replaced to pi(A) :=
min{pi, D(A)}. Hence, for any A ⊆ J the inequality

∑
i 6∈A xipi(A) ≥ D(A) is valid,

which corresponds to the KC-inequalities.
Similarly to the basic case, consider the thought experiment where we assume that

we have already paid the fixed cost for items of a set A. Also, we know that for items
in a given set B ⊆ A we have already selected the variable part up to its capacity.
That is, yi = 1 for i ∈ A and zi = ui for i ∈ B. Given this, we must still cover a
residual demand of D(A,B) = D −∑i∈A pi −

∑
i∈B ui. As above, we can truncate

the values pi and ui of every item i to pi(A,B) = min{D(A,B), pi} and ui(A,B) =
min{D(A,B) − p(A,B), ui} respectively. These simple definitions suggest a relaxation
with objective function

∑
i∈J ciyi + zigi and a constraint defined for each pair of subsets

B ⊆ A ⊆ J ,

∑

i∈J\A
min{zi, yiui(A,B)} +

∑

i∈A\B
min{zi, ui(A,B)}+

∑

i∈J\A
pi(A,B)yi ≥ D(A,B). (1)

Here, we have that zi ≥ 0 and yi ≥ 0 for all i ∈ J . The first summation in the inequality
represents the amount of demand covered by the fractional part of items in J \A. Notice
that in any solution item i ∈ J \A cannot cover more than yiui(A,B) amount of demand
with its variable part, hence the term zi in the summation can be capped by yiui(A,B).
The second summation is similar, with the only difference that variables yi are set to
1 for i ∈ A \ B. Finally, the third summation considers the integral part of items in
J \A (using the truncated value of pi). Notice that the formulation does not include the
constraints zi ≤ ui and yi ≤ 1, as we can show that these inequalities are automatically
satisfied by any optimal solution. We remark that the relaxation is non-linear. However
it can be easily linearized using an exponential number of linear constraints. Moreover,
the resulting set of inequalities can be (approximately) separated in polynomial time,
and thus the relaxation can be solved in polynomial time up to a (1 + ε) factor with the
Ellipsoid method. Our main result is the following.

Theorem 1 There is a poly-time procedure that takes a feasible solution (y, z) of the
relaxation and produces a solution of KCFV of cost ≤ 2

∑
i ciyi + zigi.

Our rounding scheme works in three steps. In each of them we seek to decrease the
number of fractional variables yi or decrease the number of constraints.

First step: Consider a solution (y, z) of the relaxation above. We will define a new
solution (y′, z′) where y′ is integral. Let A∗ be the set of items such that yi ≥ 1/2. Also
consider a set B∗ ⊆ A∗ such that zi ≥ ui(A∗, B∗)/2. Notice that B∗ is defined recursively.
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We can show that such set always exists and can be found in poly-time. Moreover, we
define part of our final solution (y′, z′) as y′i = 1 for i ∈ A∗ and z′i = ui(A

∗, B∗) for
i ∈ B∗ without duplicating the cost of (y, z) over these sets.

Second step: We now consider a reduced relaxation by taking constraint (1) using
only sets A∗ and B∗. Taking our solution (yi)i∈J\A∗ and (zi)A∗\B∗ and amplifying it
by a factor of 2, we obtain a solution that is feasible even if the right-hand side of the
inequality is changed to 2D(A∗, B∗). We consider a new relaxation with this inequality
and adding the constraint yi ≤ 1. Let us consider an optimal solution (ỹ, z̃) of this new
relaxation, which can be solved in poly-time with the Ellipsoid method. This solution
can still have many fractional variables ỹ (although we have only one inequality, it is a
non-linear one). To handle this we can use the following proposition.

Proposition 2 Let (ỹ, z̃) be as above, then:

i) For any i ∈ J \A∗ such that gi ≥ ci
pi

and z̃i > 0, then ỹi = 1.

ii) For any i ∈ J \A∗ such that gi <
ci
pi
, then ỹiui(A

∗, B∗) = z̃i.

This proposition is based on the fact that if there exists i such that gi ≥ ci
pi

, then the
solution will prefer to take ỹi = 1 rather than increasing z̃i. Also, for any i such that
gi <

ci
pi

, the solution will pay as little as possible of ỹi in order to be able to increase z̃i.
Third step: The proposition allows us to pose a new equivalent relaxation where

for each item either yi is fixed to 1, zi is fixed to 0, or yiui(A
∗, B∗) = zi. This allows

us to consider only one variable per item, and reduce the relaxation to a single linear
constraint. Then, we take variables zi’s and yi’s (only one variable for each item in
J) as the optimal solution of this reduced LP and denote by k the unique item with a
fractional yk (if it exists). Finally, in the case that i ∈ J \ A∗ lies in the first case of
Proposition 2 and yi = 1 or z̃i > 0, we set y′i = 1 and z′i = ui(A

∗, B∗). Also, when
i ∈ J \A∗ lies in the second case of Proposition 2, we set y′i = yi and z′i = yiui(A

∗, B∗).
After this, we set y′k and z′k to 0.
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The Temp Secretary Problem and

Partly-Stochastic Models for Online Scheduling

Thomas Kesselheim ∗ Andreas Tönnis (Speaker) †

1 Introduction

In the secretary problem, candidates of different value arrive over time. After each ar-
rival, the algorithm has to decide whether to permanently accept or reject this candidate.
Every decision is final. In many scheduling applications, however, commitments are not
eternal but affect only a finite time horizon. They may limit options for the upcoming
days but not for the rest of the year or even longer.

Even with such an assumption of limited commitments, traditional worst-case com-
petitive analysis is too strong a benchmark for the secretary problem. Fiat et al. [1]
introduced an interesting, partly stochastic model, which allows much more meaning-
ful analyses. First an adversary chooses which items will arrive. However, it does not
determine the arrival times, which are instead drawn from a probability distribution,
typically the uniform distribution on [0, 1].

In more detail, in the temp secretary problem, an adversary defines values of items
v1, . . . , vn. Afterwards, arrival times τj are drawn independently uniformly from [0, 1].
As time proceeds, the values and arrival times are revealed to the algorithm. Upon each
arrival, the algorithm has to decide whether to accept or to reject the respective item.
Each item is accepted for a duration of γ, which is assumed to be much smaller than 1.
At any point in time t at most B items may overlap, that is, during time t− γ and t at
most B items may be accepted.

The objective is to maximize
∑

j∈ALG vj , where ALG ⊆ [n] denotes the selection by
the algorithm. By OPT we denote the optimal selection OPT ⊆ [n], which maximizes∑

j∈OPT vj . As the arrival times τ1, . . . , τn are random, both ALG and OPT are random
variables. We evaluate the performance of an algorithm by its competitive ratio, defined

as E
[∑

j∈ALG vj
]
/E
[∑

j∈OPT vj
]
.

2 Algorithmic Ideas and Results

In [3], we introduce a new algorithmic approach to online packing problems with tempo-
ral constraints. As key idea, we consider a relaxation to OPT by removing the temporal
constraints and exchanging them with global ones. In the special case of the temp sec-
retary problem, we exploit that, for every realization of the arrival dates τ1, . . . , τn, the
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for every arriving item j do
Set t := τj ; // arrival time of j

Let S(t) be the btB/γc highest-valued items j′ with τj′ ≤ t;
if j ∈ S(t) then // if among best items

if S ∪ {j} is a feasible schedule then // and if feasible

Set S := S ∪ {j}; // then select j
end

end

end
Algorithm 1: Scaling Algorithm for length γ and capacity B

optimal offline solution OPT never contains more that Bd1/γe elements. Therefore, we
exchange the temporal constraints by only requiring Bd1/γe items to be picked through-
out the process. An online solution to this relaxation can be found using algorithms for
online linear packing problems. It then remains to derive a solution to the original
constraints.

For the temp secretary problem, this approach leads to a light-weight, easy to state
algorithm, given as Algorithm 1. For an item arriving at time t, our algorithm first
checks if it is one of the approximately tB/γ highest valued items so far. The intuition
is that a t fraction of [0, 1] has passed and the relaxation selects approximately B/γ items
in this entire time. Afterwards, we still have to make sure that it is actually feasible to
select the current item. Only at this stage the temporal structure comes into play.

We show it to be 1
2

(
1−O(

√
γ)
)
-competitive for all values of B. Furthermore, for

large values of B, a different analysis shows a better competitive ratio of 1−O (1/
√
B)−

O(
√
γ). Note that 1/2 is known to be an asymptotic upper bound to the competitive

ratio for B = 1 [1].

The approach also extends to the generalization in which items stay in the system for
different durations. The definition of the set S(t) is then generalized to the solution of a
knapsack problem. We also extend the problem from cardinality constraints to arbitrary
linear constraints by combining Algorithm 1 with the ideas from [2].

3 Future Work

There are some immediate follow-up questions from our work. For example, we assumed
that the arrival rate is constant at all points in time. In fact, it is easy to generalize
our algorithm towards general arrival distribution using quantiles, but our analysis does
not transfer. Another promising direction is towards different constraint structures, e.g.
online flows in a network. In our results, we give general bounds for packing LPs, but
for many problems with more structure better bounds should be possible.

In a much broader context, we also think that probabilistic online models have very
high potential in scheduling problems. The model used in the temp secretary problem
has some interesting features. Like other probabilistic models, it is not as pessimistic as
the fully adversarial model, which does not allow any meaningful statements here, while
still most parts of the input are assumed to adversarial. Additionally, this model has a
very clear notion of time, making it a particularly good fit for scheduling problems. It
seems reasonable to apply this kind of model to, for example, minimization objectives
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such as flow time or feasibility conditions involving covering constraints or deadlines.
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Conflict Graphs and Scheduling in Wireless Networks

Eyjólfur Ingi Ásgeirsson (Speaker) ∗ Tigran Tonoyan †

Magnús M. Halldórsson ‡

1 Introduction

One of the main issue in resource management of wireless networks is assessing their
capacity, i.e. how much communication can be achieved in a network, utilizing all the
tools available: power control, scheduling, routing, channel assignment and rate adjust-
ment? As pointed out by [5, 3], at the heart of these questions lies the maximum weight
independent set of links ( Mwisl) problem: From a given set of links with associated
weights/utilities, find an independent subset of maximum total weight. This reduction
applies to very general settings involving single-hop and multi-hop, as well as fixed and
controlled transmission rate networks. Moreover, approximating Mwisl within any fac-
tor implies achieving the corresponding fraction of the capacity region, i.e. the set of
traffic rates that can be supported by any scheduling policy. This makes Mwisl a central
problem in the area.

Unfortunately, solving this problem in its full generality is notoriously hard, since it
is well known that Mwisl is effectively inapproximable in models described by general
conflict relations or general graphs. Moreover, in general, even approximating the ca-
pacity region in polynomial time within a non-trivial bound, while keeping the delays in
reasonable bounds, is hard under standard assumptions [4].

We tackle this question in the physical model of communication with log-path fading
and aim for polynomial time algorithms with approximation guarantees over interference-
constrained networks of arbitrary topology. Towards this end, we develop a general
approximation framework that not only helps us to approximate Mwisl, but can also
be used for tackling various other scheduling problems, such as TDMA scheduling, joint
routing and scheduling and others.

The crucial feature of the approach, which generalizes a framework of Halldorsson
and Tonoyan [2], is that it involves transforming the complex physical model into an
unweighted/undirected conflict graph and solving the problems simply on these graphs.
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2 Model

In scheduling problems, the basic object of consideration is a set L of n communication
links, numbered from 1 to n, where each link i ∈ L represents a communication request
from a sender node si to a receiver node ri.

We assume the nodes are located in a metric space with distance function d. We
denote dij = d(si, rj) and li = d(si, ri). li is called the length of link i. Let d(i, j) denote
the minimum distance between the nodes of links i and j.

The nodes have adjustable transmission power levels. A power assignment for the
set L is a function P : L→ R+. For each link i, P (i) defines the power level used by the
sender node si. In the physical model of communication, when using a power assignment
P , a transmission of a link i is successful if and only if

SIR(S, i) =
P (i)/lαi∑

j∈S\{i} P (j)/dαji +N
≥ βi, (1)

where βi > 1 denotes the minimum signal to noise ratio required for link i, α ∈ (2, 6)
is the path loss exponent, N is ambient noise and S is the set of links transmitting
concurrently with link i.

A set S of links is called P -feasible if the condition (1) holds for each link i ∈ S when
using power assignment P . We say S is feasible if there exists a power assignment P for
which S is P -feasible.

3 Approximation Method

An independence system I over a set of vertices V is a pair I = (V, E), where E ⊆ 2V is a
collection of subsets of vertices that is closed under subsetting: if S ∈ E and S′ ⊂ S, then
S′ ∈ E . We define a notion of approximation of an independence system IP = (L, EP)
by another independence system IG = (L, EG) over the set L of links. The system IP
corresponds to the cumulative interference and physical model, while IG corresponds to a
conflict graph G = G(L) describing pairwise conflicts between links. The approximation
is described by several key properties.

Refinement (Feasibility of Independent Sets): Every independent set in IG
must be feasible, i.e. EG ⊆ EP . Thus, computing an independent set in IG gives also a
feasible set in IP .

Tightness (of refinement): There is a small number k such that every feasible set
S ∈ IP is a union of at most k independent sets in IG . The smallest such k is called the
tightness of refinement. This property guarantees that even an optimal feasible set can
be covered with a few independent sets.

Computability: There are efficient (approximation) algorithms for scheduling-
related problems such as vertex coloring and maximum weight independent set in IG .

An independence system IG satisfying the properties above is said to be a refinement
of IP . The two first properties establish a tight connection between the two indepen-
dence systems. That allows us to take nearly every scheduling problem in the physical
model and reduce it to the corresponding problem in conflict graphs by paying only an
approximation factor depending on tightness k.
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4 Conflict Graph Approximation of the Physical Model

Let us denote li = β
1/α
i li and call it the effective length of link i. Let ∆(L) =

maxi,j∈L{li/lj} denote the (effective) length diversity of instance L. We call a set S
of links equilength if for every two links i, j ∈ S, li ≤ 2lj , i.e., ∆(S) ≤ 2.

Definition 1. Let f : R+ → R+ be a positive non-decreasing function. Links i, j are
said to be f -independent if

dijdji > liljf

(
lmax
lmin

)
,

where lmin = min{li, lj}, lmax = max{li, lj}. Otherwise they are said to be f -adjacent. A
set of links is f -independent (f -adjacent) if they are pairwise f -independent (f -adjacent).

Let L be a set of links. The conflict graph Gf (L) is the graph with vertex set L, where
two vertices are adjacent if and only if they are f -adjacent.

We are particularly interested in sub-linear functions f(x) = O(x). A function
f is strongly sub-linear if for each constant c ≥ 1, there is a constant c′ such that
cf(x)/x ≤ f(y)/y for all x, y ≥ 1 with x ≥ c′y. Note that if f is strongly sub-linear
then f(x) = o(x). For example, the functions f(x) = xδ (δ < 1) and f(x) = log x are
strongly sub-linear.

Theorem 2. There is an O(log log ∆)-tight refinement of the physical model by a conflict
graph family G(L).

The Mwisl problem, where the weights ωi of links are fixed positive numbers, is
a refinable packing problem. Also, it is well known, e.g. [1, 6], that vertex coloring
and Mwisl problems are k-approximable in k-inductive independent graphs. Hence
there is a constant factor approximation to Mwisl in G(L), which gives an O(log log ∆)-
approximation for the Mwisl problem in the physical model.
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On Packet Scheduling

with Adversarial Jamming and Speedup

Martin Böhm ∗  Lukasz Jeż† Jǐŕı Sgall (Speaker)∗ Pavel Veselý∗

We study an online packet scheduling model recently introduced by Anta et al. [1]
and Jurdzinski et al. [2]. In this model, packets of arbitrary sizes arrive over time. The
algorithm schedules one packet at any time, its transmission cannot be interrupted by
the algorithm. (In the scheduling jargon, there is a single machine and no preemptions.)
There are, however, (instantaneous) jamming errors at times chosen by the adversary
and not known to the algorithm. A transmission taking place at the time of jamming is
corrupt, and the algorithm learns this fact immediately. The packet whose transmission
failed can be retransmitted immediately or at any later time.

The objective is to maximize the total size of packets successfully transmitted. The
goal is to develop an online algorithm with the lowest possible competitive ratio. We
focus on algorithms with resource augmentation, namely the online algorithms with
speedup s ≥ 1 compared to the offline solution. The main goal is to find the minimal
speedup s for which the algorithm is 1-competitive; we also study the tradeoff of the
competitive ratio and the speedup.

The distinguishing feature of the model is that the number of different packet sizes
(lengths) is a constant, and also the packet sizes are considered to be constants. This
means that the additive term in the definition of the competitive ratio may depend on
the number and values of the packet sizes.

Jurdzinski et al. [2] presented algorithms both with and without speedup. For the
important case of divisible packet sizes, they give a 1-competitive algorithm with speedup
s = 2 and a 2-competitive algorithm with no speedup. For general packet sizes without
speedup, the competitive ratio is in the interval (2, 3) and its value depends on the sizes
of the packets; from the results of Anta et al. [1] it follows that these ratios are optimal.

We develop two algorithms, MAIN for general packet lengths and DIV for divisible
packet lengths. Our main new results concern the analysis of the non-divisible case with
speedup. We also develop a uniform framework for the analysis of our algorithms, which
significantly simplifies the proofs compared to [2], while we match the competitive ratios
for the divisible case and obtain a 3-competitive no-speedup algorithm for the general
case as well. In addition, the algorithms are simpler than in [2], and have the following
desirable features:
• Our algorithms do not need to know possible packet sizes, while the algorithms

in [2] depend on knowing the allowed packet sizes in advance.
• Our algorithms work for any speedup s which does not need to be known in

advance, while in [2] the algorithms for the divisible case with and without speedup
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are different. I.e., our algorithm is the same no matter what is the speed (slowdown)
of the offline solution to which we compare the algorithm.
• Our algorithms are always busy, in the sense that they always transmit some packet

if there is any pending packet.

Algorithms

The general idea of the algorithm is that after each error, we start by transmitting
packets of small sizes, only increasing the size of packets after a sufficiently long period of
uninterrupted transmissions. It turns out that the right tradeoff is to transmit a packet
only if it would have been transmitted successfully if started just after the last error.
It is also crucial to start with the right packet size, namely to ignore small packet sizes
if the total size of not transmitted packets of those sizes is small compared to a larger
packet that can be transmitted. This guarantees that if no error occurs, all packets with
size equal to or larger than the size of the initial packet are eventually transmitted.

We start by some notations. We assume there are k distinct packet sizes denoted
by `i and ordered so that `1 < · · · < `k. During the run of an algorithm, a packet is
pending if it is released and not yet scheduled. Let P<i denote the total size of pending
packets of sizes `1, . . . , `i−1.

We divide the run of the algorithm into phases. The current time is denoted by t.
The time tB denotes the last invocation of step (2), which is the start of the current
phase. We set rel(t) = s(t − tB). Since the algorithm does not insert unnecessary idle
time, rel(t) denotes the amount of transmitted packets in the current phase. (We use
rel(t) only when there is no packet running at time t, so there is no partially executed
packet.) Thus rel(t) can be thought as a measure of time relative to the start of the
current phase (scaled by the speed s). Note also that the algorithm can evaluate rel(t)
without knowing the speedup, as it can observe the total size of the transmitted packets.

We now give a common description of the two algorithms, MAIN for general packet
sizes and DIV for divisible sizes. The algorithms differ only in that in step (3), DIV
enforces an additional divisibility condition.

Algorithms MAIN and DIV

(1) If no packet is available, stay idle until the next release time.
(2) Let i be the maximal i ≤ k such that P<i < `i. Schedule a packet of size `i.
(3) Choose the maximum i such that (i) there is a pending packet of size `i, (ii) `i ≤ rel(t)

and (iii) in case the algorithm is DIV , `i divides rel(t).
Schedule a packet of size `i. Repeat Step 3 as long as such i exists.

(4) If no packet satisfies the condition in Step 3, go to Step 1.

Analysis and results

The common scheme for all our proofs is the following. We carefully define critical
times Ck ≤ Ck−1 ≤ · · · ≤ C1 ≤ C0 so that C0 is the end of the schedule and Ci satisfies
that (i) at time Ci, only a bounded number of packets of size `i is pending, while (ii)
during the whole interval (Ci, Ci−1], some packet of size `i is pending. The essential part
of the proofs of R-competitiveness is to show that in each phase contained in (Ci, Ci−1],
the total size of packets of size `i or larger completed by the online algorithm is at least
1/R of the same quantity in the offline solution. The times Ci are defined so that before
Ci, the online algorithm completes almost as many of packets of size `i as the offline
solution (since only a few such packets are pending at Ci). These two facts together
imply R-competitiveness of the algorithm.
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We denote the algorithm ALG with speedup s by ALG(s).

General packet lengths. For general packet lengths we have the following bounds:

Theorem 1 MAIN (s) is Rs-competitive where:
Rs = 1 + 2/s for s ∈ [1, 4),
Rs = 2/3 + 2/s for s ∈ [4, 6), and
Rs = 1 for s ≥ 6.

Our bound is 3 for s = 1, giving the same overall bound as [2]. Note that our bound has
a discontinuity at s = 4. While for s < 4, we have examples showing that our algorithm
is not 1-competitive, for s ≥ 4 we are not able to exclude this possibility.

Well-separated packet lengths. We can obtain better bounds on the speedup nec-
essary for 1-competitiveness if the packet sizes are sufficiently different. Namely, we call
the packet lengths `1, . . . , `k α-separated if `i ≥ α`i−1 holds for i = 2, . . . , k.

Theorem 2 Let α > 1. If the packet lengths are α-separated, then MAIN (s) is 1-
competitive for any s ≥ Sα, where

Sα = (4α+ 2)/α2 for α ∈ [1, α0],
Sα = 3 + 1/α for α ∈ [α0, α1),
Sα = 2 + 2

α for α ≥ α1,

for α0 = 1/2 +
√

33/6 ≈ 1.46 and α1 = (3 +
√

17)/4 ≈ 1.78.

Note that Sα is decreasing in α, with a single discontinuity at α1. We have S1 = 6,
matching Theorem 1). Also, S2 = 3, i.e., MAIN (3) is 1-competitive for 2-separated
packet lengths, which includes the case of divisible packet lengths studied below. The
limit of Sα for α→ +∞ is 2.

Divisible packet lengths. We say that the packet lengths are divisible if `i−1 divides
`i for i = 2, . . . , k. We obtain the following results:

Theorem 3 For divisible packet lengths the following holds:
• DIV (1) is 2-competitive.
• DIV (s) is 1-competitive for s ≥ 2.
• MAIN (s) is 1-competitive for s ≥ 2.5.

This analysis of the algorithms is tight. We have examples with divisible packet
lengths showing that for any s < 2.5, MAIN is not 1-competitive, and for any s < 2,
DIV is no better than 2-competitive.

References

[1] A. F. Anta, C. Georgiou, D. R. Kowalski, J. Widmer, and E. Zavou. Measur-
ing the Impact of Adversarial Errors on Packet Scheduling Strategies. In Proc. of
the 20th Int. Colloquium on Structural Information and Communication Complexity
(SIROCCO), Lecture Notes in Comput. Sci. 8179, pages 261–273. Springer, 2013.

[2] T. Jurdzinski, D. R. Kowalski, and K. Lorys. Online packet scheduling under ad-
versarial jamming. In Proc. of the 12th Workshop on Approximation and Online
Algorithms (WAOA), Lecture Notes in Comput. Sci. 8952, pages 193–206. Springer,
2015.

160



Optimizing Egalitarian Performance in the Side-Effects

Model of Colocation for Data center Resource Management

Fanny Pascual ∗ Krzysztof Rzadca (Speaker) †

1 Introduction

The modern data center, the back-bone of cloud computing, redefines how industry and
academia use computers. In data centers, up to dozens of tasks are colocated on a single
physical machine [1]. Machines are used more efficiently, but, despite significant advances
in both OS-level fairness and VM hypervisors, tasks’ performance deteriorates [2], as
colocated tasks compete for shared resources. Suspects include difficulties in sharing
CPU cache or the memory bandwidth. As tasks are heterogeneous (CPU-, memory-,
network- or disk-intensive), the resulting performance dependencies are complex. In
order to optimize tasks’ performance, the data center resource manager should thus try
to colocate tasks that are compatible, i.e., that use different kinds of resources. This,
however, requires a performance model.

Our side-effects model [3] bridges the gap between colocation in datacenters and clas-
sic scheduling, bulk of which has been developed for non-shared machines. Rather than
trying to predict tasks’ performance from OS-level metrics, we abstract by characterizing
a task by two characteristics: its type (e.g.: a database, or a computationally-intensive
job) and its load relative to other tasks of the same type (e.g.: number of requests per
second). For each type we then use a performance function mapping a vector of loads (an
element being the total load of tasks of a certain type) to a type-relevant performance
metric. As datacenters execute multiple instances of tasks we believe that such function
can be inferred by a monitoring module matching task’s reported performance (such as
the 95th percentile response time) with observed or reported loads.

2 Our Results

We consider optimization of the worst-off performance (analogous to makespan in classic
multiprocessor scheduling problem, P ||Cmax). We use a linear performance function: on
each machine, the influence a type t′ has on t’s performance is a product of the load
of type t′ and a coefficient αt′,t. The coefficient αt′,t describes how compatible t′ load
is with t performance (the coefficient is similar to interference/affinity metrics proposed
in [2]). Low values (0 ≤ αt′,t < 1) describe small impact, thus compatible types (e.g.:
colocating a memory-intensive and a CPU-intensive task): it is preferable to colocate
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7606, Paris, France.
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a task t with tasks of the other type t′, rather than with other tasks of its own type
t. High values (αt′′,t > 1) denote incompatible types competing for resources, i.e., less
incentive to colocate (at least from the tasks’ owner’s point of view).

Our main results are the following (see [5] for proofs). The notion of type adds
complexity, as makespan minimization with unit tasks P |pi = 1|Cmax (a polynomially
solvable variant of P ||Cmax) becomes NP-hard and hard to approximate when the num-
ber of types T is not constant.

We then show how to cope with that added complexity. First, we propose a PTAS
for a constant T . Our PTAS has a similar structure to the PTAS for P ||Cmax [4]. The
two main differences are the treatment of short tasks (which we pack into containers,
and not simply greedy schedule); and sizing of long tasks.

We also propose a fast greedy approximation algorithm. The algorithm groups tasks
by clusters. All the tasks of the same type are in the same cluster. Two tasks of type i and
j are in the same cluster iff their types are compatible (αi,j ≤ 1 and αj,i ≤ 1). Clusters
are processed one by one. Each cluster is dedicated at least one machine. The algorithm
puts tasks from a cluster on a machine until machine load reaches max{2L,L + pmax},
then opens the next machine (L =

∑
pi/(m− T )).

To characterize in detail the optimal schedules in function of the coefficient α, we
study a series of special cases with two types. We identify two tipping points, i.e., values
of α for which the shape of the optimal schedule changes. For 0 ≤ α ≤ 1, all machines
should be shared between types (if possible). For 1 < α < 2, there are some instances
that share all machines, but for divisible load (i.e., many small tasks), there is at most
one shared machine. Finally, for α ≥ 2 at most one machine is shared. For each case,
we show fast approximation algorithms.

In addition to worst-case performance proofs, we test our algorithm by simulation
on a trace derived from one of Google clusters. We show that our algorithms lead to
more efficient allocations compared to algorithms designed for P ||Cmax.
Acknowledgements This research has been partly supported by a Google Fac-
ulty Research Award, a Polish National Science Center grant Sonata (UMO-
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The Itinerant List Update Problem

Neil Olver∗ Kirk Pruhs (Speaker)† Kevin Schewior‡ René Sitters§

Leen Stougie¶

1 Introduction

We introduce a variation of the online List Update Problem, which we call the Itinerant
List Update Problem (ILU). The setting consists of n (data) items, that without loss of
generality we will assume are the integers [n] = {1, . . . , n}, stored linearly in n locations
on a track (tape). The track has a single read/write head. Requests for these items
arrive over time. In response to the arrival of request for an item x, the online algorithm
can perform an arbitrary sequence of the following unit cost operations:

Move: Move the head to the left, or to the right, one position.

Swap: Swap the item pointed to by the head with the adjacent item on the left, or the
adjacent item on the right.

In order to be a feasible response, at some point in this response sequence, the tape head
must point to the position holding x. The objective is to minimize the total cost over
all requests.

Our motivation for introducing ILU arises from track management within Domain
Wall Memory (DWM). Figure 1 depicts a basic DWM track, which consists of a ferro-
magnetic nanowire, a read/write head, and access transistors [2, 4]. The nanowire holds
multiple domains separated by ultra narrow domain walls. Each domain represents one
binary bit using its magnetic polarity. All domains of one nanowire share one read/write
head that can extract or modify the domain under the head. By injecting current pulses
through the two ends of the nanowire, the domains can be “shifted” in both directions
such that they can be moved under the head to be read and written. We envision
that in an architecture with w bit words, tracks will be grouped into super-tracks, each
consisting of w tracks (so technically ILU is about super-track management).
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Figure 1: Domain Wall Memory [2]. Figure 2: Comparing Technologies [4].

Figure 2 compares different memory technologies, including the emerging memory
technologies, such as Phase-change Memory (PCM), Spin-Transfer Torque magnetic
RAM (STT-MRAM), Ferroelectric RAM (FeRAM), and Domain Wall Memory (DWM),
that can be potentially integrated in mobile devices. From Figure 2, one can see that
among these technologies, DWM has the highest density. Density is one of the major
constraints on enlarging on-chip memory in mobile devices. But one can also see that
the access time for DMW is somewhat variable, with the low end being competitive with
the access time of the fastest technologies, and the high end being an order of magni-
tude slower. This variability is due to the time for shifting. So good track management
policies may enable access times for DMW to be competitive with the fastest memory
technologies.

The main difference between ILU and the standard list update problem is that in
the standard list update problem there is the additional feasibility constraint that at the
end of each response sequence, the head has to return to a fixed home position. If the
head has a home position, the algorithm/policy Move-To-Front (MTF), which moves
the last accessed item to the home position (and moves intermediate items one position
further from the home) is O(1)-competitive (This can be shown by simple modifications
to the analysis of MTF in [3], in which the home position is the first position, and
costs are defined somewhat differently). One natural adaptation of MTF for ILU would
be: Move the currently requested item to a position adjacent to the location of the
previously requested item. However this algorithm is Ω(n)-competitive on the following
simple request sequence, which assumes the items are initially ordered as 1, . . . , n and
that the head is initially in the first position: 1, n, n − 1, n − 2, . . . , 2. The algorithm
moves item n − i, 0 ≤ i ≤ n − 2, to position i + 2 in the track, at a cost of Ω(n2),
while the cost would only be 2n if the items are not reordered. There are slightly more
complicated instances that show that the other natural adaptations of MTF also Ω̃(n)-
competitive. These lower bounds hint at an additionally difficulty of ILU relative to
the standard list update problem. In both problems it seems natural for the online
algorithm to aggregate recently accessed items together. However, in the standard list
update problem it is obvious where to aggregate these items, near the home location,
while in ILU, it seems unclear where these items should be aggregated.
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We show that the expected competitive ratio of every randomized online algorithm
for ILU is Ω(log n). In the lower bound instance, the adversary picks an initial random
permutation π for the items in its track, and never swaps any items. Thus intuitively
to be competitive, the online algorithm must “learn” π. The requests are designed in
such a way that the adversary can handle them relatively cheaply, without revealing too
much information about π. So the lower bound shows that every online algorithm may
have to spend an Ω(log n) factor more than optimal to “learn” an ordering. Intuitively
this shows that the “where to aggregate problem” for ILU is insurmountable, at least in
terms of an online algorithm achieving O(1)-competitiveness.

We show that ILU is essentially equivalent to a variation of the standard Minimum
Linear Arrangement Problem (MLA), which we call the Dynamic Minimum Linear Ar-
rangement (DMLA) problem, in that a polylog(n)-competitive algorithm for one can be
used to obtain an polylog(n)-competitive algorithm for the other. The setting for DMLA
is the same as the setting for ILU, a linear track of items. In DMLA a sequence of graphs
arrive over time, where the vertices of these graphs are the items stored in the track. In
response to the arrival of a graph Ht at time t, the algorithm can perform an arbitrary
sequence of swaps of adjacent items in the track. The objective is to minimize the swap
cost plus the service cost. The swap cost is the sum over all times t, of the number of
swaps made in response to the arrival of Ht. The service cost is the sum over all times
t, of the sum over the edges {x, y} ∈ Ht of the distance between x and y in the track
after the swaps made in response to Ht. Note that in DMLA there is no concept of track
head, and swaps can be made anywhere on the track. The standard MLA problem is
essentially a special case of the DMLA problem in which all of the many arriving graphs
are identical (so there is nothing to be gained from reordering the track).

We give an offline polynomial-time algorithm for DMLA assuming that every graph
given as input consists of a single edge, and show that it has an approximation ra-
tio of O(log2 n). By applying our reductions, we obtain a polynomial-time O(log2 n)-
approximation for ILU. Our algorithm for DMLA is similar to the divide-and-conquer
algorithm for MLA in [1], except that it works on a time expanded graph, which cre-
ates some additional complications. This shows that computational complexity is not a
barrier to achieving a poly-log approximation for ILU.
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The Greedy Algorithm for Capacitated Covering Problems

Britta Peis ∗ José Verschae † Andreas Wierz (Speaker) ‡

1 Introduction

Integer programs of the form min{cTx : Ax ≥ r, x ∈ Zn
+} (P) with A ∈ ZL×E+ , r ∈ ZL

and c ∈ ZE
+ are called covering problems. Here, we assume that L is a family of subsets

of the elements which, for each row of A, describes the columns which are zero. That is,
S ∈ L, e ∈ S ⇒ AS,e = 0. The name stems from the following observation: solutions to
such problems use (multiple) copies of the columns in order to cover the righthandside
value for each constraint. Since all coefficients are non-negative, adding additional copies
of a column can not render a solution vector infeasible.

There are interesting connections between covering and scheduling problems. In
fact, several single machine scheduling problems such as 1|pmnt|∑j fj(Cj), with fj
non-decreasing, or 1|rj |

∑
j wjCj can be formulated as covering problems in a relatively

simple way. The former was pointed out in [11] to be a generalization of unsplittable
flow cover on a path, which can be 4-approximated [1].

Besides this, many interesting combinatorial optimization problems can also be for-
mulated in this manner. Famous examples are subset cover, cut covering and contra-
polymatroids. Contra-polymatroids are of the form above with L being the Boolean lat-
tice and constraints of the form

∑
e6∈S xe ≥ r(S) for all S ∈ L. The function r : L → Z+ is

supermodular, monotone decreasing and non-negative. For contra-polymatroids, a very
simple dual greedy algorithm is able to obtain an optimum solution. The dual to the lin-
ear relaxation of the covering problem above can be stated as max{yT r : yTA ≥ c, y ≥ 0}
(D). Set S = ∅, increase the corresponding dual variable yS until some element e gets
tight. Set xe = r(S + e) − r(S), add e to S and iterate until r(S) = 0. Polymatroids,
and the depicted greedy algorithm, are known for almost half a century [4].

For the knapsack cover problem, and many other problems as well, the exact same
algorithm was used in order to obtain constant factor approximations [1, 2, 12]. In most
of these known approximation results, a problem specific analysis was used. Many times,
these analyses look very similar and use essentially the same techniques.

If A ∈ {0, 1}m×n, there are fairly general conditions on the system (A, r) known,
which ensure that the greedy algorithm computes an optimum solution [4, 5, 6, 8, 9, 10].
Most results have in common that the constraints form some kind of lattice on which r is
either submodular or supermodular. We discuss similar conditions in case of A ∈ Zm×n

+

and approximate solutions.
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2 Our results

We consider integer covering problems (P) with constraints for subsets of elements which
form a ring-family. A family F of subsets of groundset E is called a ring-family if any
two sets S, T ∈ F imply S ∪ T, S ∩ T ∈ F . That is, a family is called a ring-family, if
it is closed under union and intersection. We also assume that ∅, E ∈ F . A ring-family
forms a lattice L = (F ,⊆,∪,∩). The Boolean lattice is an example for a ring-family.

We analyze the following simple dual greedy algorithm. Initialize y ≡ 0, x ≡ 0. Select
the minimal element in L and increase yS until

∑
S ySAS,e = ce some element e 6∈ S. Let

S′ be the minimal element in L which also contains e. Set xe = d r(S)+−r(S′)+AS,e
e. Remove

all elements from L which do not contain S′ and iterate until r(S) ≤ 0.

In general, we may not assume that the greedy algorithm will terminate with a
feasible solution for (P). But we can show that it will, if the system (A, r) satisfies the
following conditions.

(P1) r is monotone: r(S) ≥ r(T ) for all S � T and

(P2) supermodular: r(S) + r(T ) ≤ r(S ∨ T ) + r(S ∧ T ) for all S, T ∈ L,∈ T .

(P3) For each element e ∈ E, A∗,e is monotone: AS,e ≥ AT,e for all S � T .

(P4) For every two sets S � T ∈ L with r(T ) > 0 and e 6∈ T , let S′ = min(L \ S \ e)
and T ′ = min(L \ T \ e). Then r(S)−r(S′)

AS,e
≥ r(T )−r(T ′)

AT,e
.

Unfortunately, these properties do not suffice in order to obtain good approximation
guarantees. Even with two elements, we can construct instances which have an un-
bounded integrality gap. Moreover, we can show that subset cover can be formulated as
a problem of type (P) satisfying (P1) - (P4). Hence, no o(1 − log n) approximation for
(P) exists unless NP = DTIME(nO(log logn)) [7]. The former issue can be handled by a
careful truncation of coefficients of the matrix A.

Definition 1. Given a system (A, r) on a ring-family satisfying (P1) - (P4), we define
the system (A′, r) as below to be the truncated system. For S ∈ L and e 6∈ S, let
S′ = min(L \ S \ e). Then set A′S,e = min{AS,e, r(S)+ − r(S′)+}.

We can show that the truncated system (A′, r) contains the same integer feasible
points as the system (A, r). Although the truncation no longer satisfies (P4), we can
also show that the greedy algorithm applied to system (A′, r) still obtains a feasible
solution. The approximation factor depends on the following parameter δ. Given S ∈ L
with e 6∈ S, let S′ = min(L\S \ e) and define δS,e =

A′∅,e
A′S,e

, if r(S′) ≥ 0 and A′S,e > 0, and

δS,e = 1, otherwise. Let δ = maxS,e δS,e be the maximum of these terms.

The value of δ is the maximal ratio between coefficients in A′ which may occur
on a chain in the dual constructed by the greedy algorithm before the rank becomes
negative. Intuitively, the following happens: If the algorithm selects many elements with
small coefficient A′S,e, these may have a very large contribution A′∅,e ≤ δA′S,e towards
the constraint for S = ∅. Hence, a small value of δ guarantees that no constraint
is oversubscribed by a large factor. This, in-turn, results in a good approximation
guarantee using standard arguments. Our main result is the following.
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Theorem 2. The greedy algorithm applied to the truncation (A′, r) of a system (A, r)
on a ring-family satisfying (P1) - (P4) obtains a solution with cost no larger than b(δ+
a)OPT . Where a = 0, if r is non-negative and a = 1, otherwise. Moreover, b = 1, if
r(S)+−r(S′)+

A′S,e
∈ Z+ for all S ∈ L, e 6∈ S, S′ = min(L \ S \ e), and b = 2, otherwise.

The approximation factor coincides with many well-known results, for example, for
polymatroids, vertex cover, or knapsack cover with item multiplicity and separable con-
vex cost- and concave utility functions. In terms of lower bounds, we can construct a
family of instances whose truncation (A′, r) has an integrality gap of o(log δ).
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A Parallel Machine Lot-Sizing and Scheduling Problem

With a Secondary Resource and Cumulative Demand

Murat Güngör (Speaker) ∗ Ali Tamer Ünal †

1 Introduction

Motivated by foundry planning in aluminum alloy wheel production, we consider a novel
parallel machine lot-sizing and scheduling problem: A number of items are to be pro-
duced on identical parallel machines. In order to produce an item, a piece of equipment
(mold) particular to that item must be installed in the machine. Planning horizon is
divided into buckets for which all-or-nothing assumption is valid. The objective is to
minimize the number of setups (mounts) and teardowns (dismounts). The novelty lies
in the assumption that demands are given for the entire planning horizon rather than
for every single period. In this respect, our problem differs from those in the literature
(Lasdon and Terjung, 1971; Eppen and Martin, 1987; Vanderbeck and Wolsey, 1992;
Jans and Degraeve, 2004; Gicquel et al., 2012). Cumulative demand is not only a realis-
tic assumption as far as automotive industry is concerned, but it also leads to a problem
bearing an interesting structure.

2 Formulation

We formulate two equivalent mixed-integer programs (cf. Gicquel et al., 2012). In the
first one, machines are modeled explicitly, whereas in the second, aggregate variables
are used. Let xit be the total number of molds of type i used in period t. Let s+it
be the number of setups required for molds of type i in period t; similarly define s−it
for teardowns (t > 1). We denote by T and M the number of periods and machines,
respectively, and by xi the demands as average number of molds to be used in a period.
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Turkey.

169



The second (aggregate) formulation is given below.

min
∑

i,t

(s+it + s−it)

s.t.
∑

i

xit ≤M for all t

1

T

∑

t

xit ≥ xi for all i

xi,t−1 + s+it − s−it = xit for all i, t

s+it , s
−
it ≥ 0 for all i, t

xit ∈ Z≥0 for all i, t

3 Results

Our theoretical results on the problem are as follows. Proofs are omitted except the
outline provided for that of computational complexity.

Theorem 1. (i) The problem is feasible if and only if
∑

i xi ≤ M . In this case, the
optimal objective value z∗ must be an even integer.
(ii) If

∑
i dxie ≤M , then z∗ = 0.

(iii) z∗ cannot be greater than 2I − 2, where I denotes the number of mold types.

Theorem 2. The problem is NP-hard.

Proof. Let a1, . . . , am and b = 1
2

∑m
k=1 ak be positive integers. Consider an instance of

the problem where M = 2, I = m, T = b, and xi = ai
T . Then Partition has a positive

answer if and only if z∗ ≤ 2I − 4.

We conjecture that the following two sets of inequalities are optimality cuts:

bxic ≤ xit ≤ dxie for all i, t (1)
∑

t

s+it ≤ 1,
∑

t

s−it ≤ 1 for all i. (2)

Proving this claim turns out to be tricky. The difficulty is, making one mold type fit
the conditions possibly spoils the situation for other mold types, so it is unlikely that
an argument based purely on local manipulations will do. Nevertheless, we can give two
partial results. First, note that any one of (1) and (2) implies

s+it ≤ 1, s−it ≤ 1 for all i, t. (3)

Theorem 3. Assuming (3), the inequalities (1) are optimality cuts for T ≤ 3.

Theorem 4. Assuming (1), the inequalities (2) are optimality cuts for T ≤ 4.

We propose a polynomial-time heuristic algorithm for the problem. Feeding the
solver with an initial heuristic solution slightly improves solution performance. This is
also true of setting the absolute gap tolerance to 2 − ε (recall that z∗ must be even).
However, the cuts (1) and (2) do not seem to be useful according to our computational
study.
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Finally, we discuss two possible extensions to the problem related to real-life appli-
cations. First, we consider “vertical constraints,” limiting the number of setups and
teardowns in each period (cf. Lasdon and Terjung, 1971). Second, we study “minimum
lot size restrictions,” which translates in our problem as a lower bound on the num-
ber of periods a mold should remain within a machine after being installed. Such a
restriction might stem from shop floor peculiarities (e.g. materials to be processed may
only be stored and retrieved in certain large batches), or a managerial decision based
on the observation that scrap rates gradually decrease as one produces more and more
after a new setup. We show how these two sets of constraints can be incorporated into
the formulations and elaborate on some properties of the new problems arising thereby.
Computational tests indicate that it is significantly more time-consuming to solve these
extended models.
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Scheduling Demand Response on the French Spot Power

Market for Water Distribution Systems by Optimizing the

Pump Scheduling

Chouaib Mkireb (Speaker) ∗ Abel Dembele † Antoine Jouglet ‡

Thierry Denoeux §

1 Introduction

The control of peak electricity demand is more and more important in a context of
massive integration of renewable energies and some new uses of electricity: electric ve-
hicles, heat pumps, etc. Balancing in real time load and generation is a difficult task
for Transmission System Operators (TSO) because they are facing several uncertainties:
weather change, unavailability of production plants, network congestions, etc. In France,
electricity consumption is highly driven by weather conditions, especially in winters be-
cause of the preponderance of electric heating in households. In cold winters, a decrease
of 1 degree Celsius of temperature implies an increase of 2300 MW of electricity demand,
it is the Thermo-Sensibility phenomenon. The peak of consumption occurred on the 08th

February 2012, estimated to 102 GW at 7 pm, alerted the French TSO RTE (Réseau
Transport d’Electricité), and showed the need to develop efficient methods for the active
management of demand. Demand Response (DR), defined as the change in the power
consumption of an electric utility customer in response to a given signal, brings flexi-
bility to the electric grid by adapting consumption to production. Industrial processes
are believed to be the best candidates for Demand Response, especially those with stor-
age units: warehouse, electric batteries. They can adapt their energy consumption to
the needs of the electric network, in return for remuneration. Water systems, thanks to
reservoir storage and pipe transfer capacities, are electrically flexible industrial processes
that can contribute to balance the electric grid, allowing electricity production with low
greenhouse gas emissions.

In this talk, we present the opportunities and constraints for water systems to par-
ticipate in efficient Demand Response mechanisms in France, providing flexibility for
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the electric grid by reducing peak consumptions. We evaluate the economic benefits for
water utilities for optimizing pump scheduling and Demand Response trading opera-
tions on the French spot power market (NEBEF Mechanism), under time of use (ToU)
electric contracts. We formulate the problem as a non-linear mixed integer optimization
problem, and propose a linearization approach to make it tractable. Then, we solve the
problem using a branch and bound algorithm for a range of water demand scenarios and
electricity prices on the French spot market. Using a real water system in France, the
financial reliability of the NEBEF Demand Response mechanism is shown to allow for
up to 50% of savings on the total energy bill.

2 Context and Objective

The NEBEF mechanism is applicable since April 2016 in France. It allows to sell
energy curtailment of an energy consumer, called a DR bloc, in day ahead on the spot
market via a DR operator. The DR bloc is sold at the market price, which is the inter-
section of the supply and the demand curves. The DR operator must then compensate
financially the supplier of the site with energy curtailment for the energy injected into the
network and valued by the DR operator on the market [1]. The amount of compensation
is regulated and depends on the type of the day: season, time, working or non-working
days. The final incentive for the DR operator is the difference between the spot price
and the compensation. Since it is a recent mechanism, no study has been carried out in
this field to our knowledge. Furthermore, France is the only country in Europe to allow
DR to participate directly to Day Ahead (D-1) markets as a resource [2]. However, some
authors have been interested in water systems and their participation to some other DR
mechanisms around the world: Demand Response and water distribution systems in UK
[3], Demand Response in California Agricultural Irrigation [4]. These studies present the
design of the local Demand Response Markets, and evaluate the potential, the benefits
and the constraints for water systems to take part of these markets.

In this talk, we formalize the optimization problem resulting in participation of water
systems in the Demand Response NEBEF mechanism. We model Demand Response in
the objective cost function of a water utility aiming at:

1. minimizing the total electricity cost due to pumping operations (*) ;

2. maximizing the revenues earned from trading DR blocs on the spot market (**) ;

3. respecting all the physical and operational constraints of the water distribution
system;

4. respecting all the NEBEF constraints as described by RTE [5].

3 Mathematical formulation

We denote by :

1. xi,t: the binary variable indicating the state of the pump i at time t.

2. Ci,t: the electric cost when pump i in ON at time t.
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3. dt: the binary variable indicating if we participate in the spot market at time t or
not.

4. Pdr,t: the electric power (DR bloc) put on sale at time t.

5. rt: the market spot price at time t (in e/ MWh).

We write the objective function ensuring (*) and (**) as follows:

min
xi,t,dt,Pdr,t

∑

i,t

Ci,t ∗ xi,t − Pdr,t ∗ dt ∗ rt .

The objective function aims at making, for each step time t, a trade-off between electric
consumption by activation of pumps, and energy curtailment by selling the energy not
consumed on the spot market in day ahead.

In this talk, we will first deal with the modeling aspect of the NEBEF constraints:
minimum DR blocs per event, shape of the load curve for a DR event, maximum duration
of an event, etc. Then, a mathematical approach will be proposed to linearize some of
these constraints and the second term of the objective function. We will use a branch
and bound algorithm to solve the optimization problem for a range of water demand
and electricity price scenarios. The model has been tested on a real network composed
of more than 120 pumps and 70 storages. The numerical results show that the NEBEF
mechanism is the most reliable in winter for both the water utility and the electric grid,
between 18:00 and 20:00:

1. the DR blocs are the most profitable for the water utility in terms of economic gain:
3% to more than 50% of gain compared to the normal optimal pump planning,
according to scenarios;

2. 10 to 15 MW of peak power demand reduction per DR event, which corresponds
to 7 to 10 Kg of CO2 emissions avoided per event.
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An Exact Method for Solving the Two-Machine Flow-Shop

Problem With Time Delays

Mohamed Amine Mkadem (Speaker) ∗ Aziz Moukrim ∗ Mehdi Serairi ∗

1 Introduction

We address the flow-shop scheduling problem with two machines and time delays, which
is denoted by F2|lj |Cmax. F2|lj |Cmax can be described as follows. Given a set J =
{1, 2, . . . , n} of n jobs and two machines (M1,M2), each job j ∈ J has two operations
O1,j and O2,j . The operation O1,j (resp. O2,j) must be executed without preemption
during p1,j (resp. p2,j) time units on M1 (resp. M2). In addition to the resource
constraints of the machines and the non-preemption of jobs, a schedule S is considered
feasible if, for each job j ∈ J , a time delay of at least lj time units must elapse between
the completion of O1,j and the start of O2,j . The goal is to find a feasible schedule S
that minimizes the makespan, i.e, the maximum job completion time.

The F2|lj |Cmax problem is NP-hard in the strong sense even with unit-time oper-
ations [5]. Therefore, it has been the scope of a variety of investigations. As far we
know, [2] and [4] proposed lower bound methods. Moreover, [2] investigated heuristic
approaches where he introduced four constructive heuristics and a Tabu Search algo-
rithm. It should be noted that [2] implemented an exact method based on the branch-
and-bound method of [1], which is originally made for the job-shop problem. Another
branch-and-bound method was proposed by [3] for the unit-time operations case.

The objective of this paper consists in introducing a branch-and-bound algorithm
for F2|lj |Cmax. To our aim, we propose a set of lower bounds and an upper bound. In
addition, a set of dominance rules is proposed in order to reduce the search space.

2 The Branch-and-Bound Algorithm

In this section, we present an exact method for F2|lj |Cmax based on a branch-and-bound
enumeration scheme. At first, let us introduce the following observation.

Observation 1 Let σ be a fixed job sequence on M1 of all jobs, then schedules in which
the job sequence σ is fixed first on M1 and the jobs are executed on M2 according to the
nondecreasing order of their arrival times are dominant.

According to this observation, our branch-and-bound enumerates job sequences on
M1 as follows. At a given node Nσ1 of the search tree of the branch-and-bound, a partial
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job sequence σ1 of |σ1| jobs is fixed on M1. In order to reduce the number of explored
nodes, we invoke at each node Nσ1 the following features:

• A preprocessing procedure that aims to fix some precedence relationships between
jobs on each machine.

• Several lower bounds of [2] and [4] that have been adapted to be used inside the
branch-and-bound search tree.

• An upper bound based on a local search technique applied on the current sub-
sequence.

• Three dominance rules that allow to discard nodes from additional expansions in
order to reduce the computational time of the proposed branch-and-bound algo-
rithm.

If these features fail to prune the current node Nσ1 , then for each unscheduled job j
a son node is created from Nσ1 , in which j is fixed after σ1. Note that we adopted the
depth-first node selection strategy.

3 Computational results

A computer simulation of the branch-and-bound algorithm, which was carried out on a
set of 360 instances of [2], shows that our branch-and-bound method outperforms the
state of the art exact method. In particular, we manage to solve 358 instances among
360 possible ones.
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A New Necessary Condition of Optimality for a Single

Machine Scheduling Problem With Deteriorating Jobs

Stanis law Gawiejnowicz (Speaker)∗ Wies law Kurc†

1 Introduction

We consider the following open scheduling problem [5]. The set of n + 1 independent
jobs J0, J1, . . . , Jn, where n > 2, has to be scheduled on a single machine, starting
from time 0. The processing time of job Jj linearly deteriorates in time and is equal
to pj(t) = 1 + αjt, where t is the starting time of the job, αj > 0 is its deterioration
rate and 0 ≤ j ≤ n. Let a◦ = (a0, a1, . . . , an) denote the initial sequence of coefficients
aj = 1 + αj > 1, where 0 ≤ j ≤ n. Since the order of jobs with the same deterioration
rate has no impact on schedule optimality, we assume that ai 6= aj whenever i 6= j
and 0 ≤ i, j ≤ n. Let P(a◦) denote the set of all permutations of sequence a◦. Then
any sequence aπ ∈ P(a◦), in which the elements of sequence a◦ are ordered according
to a permutation π = (π0, π1, . . . , πn) of indices 0, 1, . . . , n, corresponds to a schedule
in which the job with index π0 starts at time 0 and all remaining jobs are scheduled
one by one without idle times. Hence, for a given aπ = (aπ0 , aπ1 , . . . , aπn) ∈ P(a◦),
where aπj = 1 + απj for 0 ≤ j ≤ n, the completion time of the jth job in the schedule
corresponding to sequence aπ is equal to Cj(a

π) = Cj−1(aπ) + pπj (Cj−1(a
π)) = 1 +

aπjCj−1(a
π), with C0(a

π) = 0 + 1 + απ0 · 0 = 1, since job Jπ0 starts at time t = 0.
Then, the problem under consideration is to find a sequence aσ ∈ P(a◦) such that∑n

j=0Cj(a
σ) = minaπ∈P(a◦)

{∑n
j=0Cj(a

π)
}
, where job completion times Cj(a

π) are

defined as above. This problem will be called problem (P ).
Problem (P ) is a dynamic, time-dependent scheduling problem in which deteriorating

job processing times are non-decreasing functions of the starting times of the respective
jobs. We refer the reader to monographs [1, 2, 6] for the most recent discussion on
different types, properties and applications of dynamic scheduling problems.

Research on problem (P ) has a 25-year-old history that was initiated by paper [5],
where the problem was formulated and its basic properties were proved. The most
important property proved there, which we will call the first necessary condition of
schedule optimality for problem (P ), says that if (aπ0 , aπ1 , . . . , aπn) ∈ P(a◦) is an optimal
schedule for (P ), then it is V-shaped. (A sequence (aπ0 , aπ1 , . . . , aπn) is said to be V-
shaped, if there exists 0 ≤ m ≤ n such that aπk ≥ aπk+1

for any 0 ≤ k ≤ m − 1 and
aπk ≤ aπk+1

for any m ≤ k ≤ n− 1.) Let us also notice that a similar property holds for
more general variations of problem (P ) [3].
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The first necessary condition implies the bound O(2n) on the number of possible
optimal schedules for problem (P ). In this talk, we present a new second necessary
condition of schedule optimality for (P ), decreasing the bound O(2n) by the factor

O(n−
1
2 ), and a few other results related to this new condition [4].

2 Auxiliary results

Below we present the results we use in the proofs of the main results given in Section 3.

Given a = (a1, . . . , ar, . . . , aq, . . . , an), where 1 ≤ r < q ≤ n, let sequence b be in
the form of aq−r or aq−r, where aq−r = (a1, . . . , ar−1, aq, ar, . . . , aq−1, aq+1, . . . , an) and
aq−r = (a1, . . . , ar−1, ar+1, . . . , aq, ar, aq+1, . . . , an).

Let a = (a1, . . . , am, . . . , an) ∈ P(a◦) be a V-shaped sequence such that am is the
minimal element in a and 1 < m < n. Index r is said to be m-conjugated to index
q, if m < q ≤ n, 1 ≤ r < m and aq−r is V-shaped. Similarly, index q is said to be
m-conjugated to index r, if 1 ≤ r < m, m < q ≤ n and aq−r is V-shaped. Let

∆k(r, q) =

q−k−1∑

i=1

q−k−1∏

j=i

aj −
q−1∑

i=q−k+1

i∏

j=q−k+1

aj −
1

aq

n∑

i=q+1

i∏

j=q−k+1

aj

and

∇k(r, q) =
1

ar

r−1∑

i=1

r+k−1∏

j=i

aj +
r+k−1∑

i=r+1

r+k−1∏

j=i

aj −
n∑

i=r+k+1

i∏

j=r+k+1

aj ,

where 1 ≤ r < q ≤ n and k = 1, 2, . . . , q − r.

Lemma 1 If a = (a1, . . . , ar, . . . , aq, . . . , an) with 1 ≤ r < q ≤ n, then we have
||C(aq−r)||1 − ||C(a)||1 =

∑q−r
k=1(aq − aq−k)∆k(r, q) and ||C(aq−r)||1 − ||C(a)||1 =∑q−r

k=1(ar+k − ar)∇k(r, q).

3 Main results

The first two main results are equivalent formulations of the new necessary condition of
schedule optimality for problem (P ). In view of space limitations we skip details of an
iterative procedure which effectively verifies the inequalities given in Theorem 3.

Theorem 2 Let a = (a1, a2, . . . , an) be an optimal schedule for problem (P ). Then (i)
a is V-shaped, the minimal element in a is am, where 1 < m < n, and (ii) for any r and
q such that 1 ≤ r < m < q ≤ n we have

∆1(r, q) =

q−2∑

j=1

q−2∏

k=j

ak −
n∑

i=q+1

i∏

k=q+1

ak ≥ 0

and

∇1(r, q) =
r−1∑

j=1

r−1∏

k=j

ak −
n∑

i=r+2

i∏

k=r+2

ak ≤ 0.
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Theorem 3 Let a = (a1, a2, . . . , an) be an optimal schedule for problem (P ). Then (i)
a is V-shaped, the minimal element in a is am, where 1 < m < n, and (ii) there hold
inequalities

∆1(m− 1,m+ 1) =

m−1∑

j=1

m−1∏

k=j

ak −
n∑

i=m+2

i∏

k=m+2

ak ≥ 0

and

∇1(m− 1,m+ 1) =
m−2∑

j=1

m−2∏

k=j

ak −
n∑

i=m+1

i∏

k=m+1

ak ≤ 0.

Given an instance a◦ of problem (P ), let VI(a
◦) and VII(a

◦) denote the sets of all
a ∈ P(a◦) that satisfy the old and the new necessary condition, respectively. Definitions
of sets P(a◦), VI(a◦) and VII(a

◦) imply that VII(a
◦) ⊂ VI(a◦) ⊂ P(a◦). Moreover, since

|P(a◦)| = n! and |VI(a◦)| = 2n, we have |VII(a◦)| ≤ |VI(a◦)| < |P(a◦)|.
Let u = min {a◦i : i = 1, 2, . . . , n} and v = max {a◦i : i = 1, 2, . . . , n} . Let us notice

that 1 < u < v. Let dn = n log u
log u+log v and gn = n log v

log u+log v + 1.
The next result describes possible indices of the minimal element am in a ∈ P(a◦).

Theorem 4 Let a = (a1, . . . , am, . . . , an) ∈ P(a◦) be a V-shaped schedule for problem
(P ) such that am is the minimal element in a. Then (i) if u < v are arbitrary, then
dn < m < gn; (ii) if v → u, then n

2 ≤ m ≤ n
2 +1; (iii) if v → +∞, then m ∈ {1, 2, . . . , n}.

Let us notice that since 1 ≤ ddne ≤ m ≤ bgnc ≤ n, Theorem 4 implies that the set
of possible values of m is D = {ddne, . . . ,m, . . . , bgnc} ⊂ {1, . . . , n}.

Let VD(a◦) denote the set of all a = (a1, . . . , am, . . . , an) ∈ P(a◦) such that a is
V-shaped and m ∈ D. Let us notice that VII(a

◦) ⊂ VD(a◦) ⊂ VI(a◦) and the cardinality

of VD(a◦) equals |VD(a◦)| = ∑bgnck=ddne
(
n
k

)
.

Our last main result gives bounds on the cardinality of the set VD(a◦).

Theorem 5 Let us denote c(n) =
√

2
πn 2n

(
1 +O

(
1
n

))
and let u and v, 1 < u < v, be

defined as above, respectively. Then |VII(a◦)| ≤ |VD(a◦)| ≤
(

1 + log v−log u
log v+log un

)
×c(n) and,

if v is sufficiently close to u, |VD(a◦)| ≥ c(n).
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Scheduling When You Don’t Know the Number of Machines

Clifford Stein ∗ Mingxian Zhong (Speaker) †

1 Introduction

For many problems, one does not know the entire input accurately and completely
in advance. There are different ways of addressing such uncertainty, e.g. via online
algorithms (assuming that the input arrives over time), dynamic algorithms (assuming
the input changes over time) or robust optimization (assuming that there is bounded
uncertainty in the data). Another way of addressing uncertainty is to require one solution
that is good against all possible values of the uncertain parameters. Examples of work
in this direction include the universal traveling salesman problem (one tour that is good
no matter which subset of points arrive) [9], robust matchings (one matching is chosen
and then evaluated by its top k edges, where k is unknown) [7], a knapsack of unknown
capacity (one policy of packing that is good irrespective of the actual capacity) [5] and
2-stage scheduling (some decisions must be made before the actual scenario is known)
[10]. In scheduling problems, there are many ways to model uncertainty in the jobs,
including online algorithms [1], in which the set of jobs is not known in advance, and
work on schedules that are good against multiple objective functions [4]. But there is
much less work studying the possibility of uncertainty in the machines, and the work we
are aware of studies uncertainty in speed or reliability (breakdowns) [2].

Motivated by the need to understand how to make scheduling decisions without
knowing how many machines we will have, we consider a different notion of uncertainty,
that is, a scenario in which you don’t know how many machines you are going to have,
but you still have to commit (partially) to a schedule by making significant decisions
about partitioning the jobs before knowing the number of machines.

This type of decision arises in a variety of settings. For example, many scheduling
problems are fundamentally about packing items onto machines and there are many
examples of problems that concern packing items where there are multiple levels of
commitment to be made with partial information. For example, in a warehouse, you
may need to take a large order and place it into multiple boxes, without knowing exactly
how many trucks you will have to ship the items. You therefore want to be able to pack
the items well, given the various possible number of trucks. Another example involves
problems in modern data centers. In data centers, there are some systems which require
you to group work together into “bundles” without knowing exactly how many machines
you will have. For example, in a map-reduce type computation, the mapping function
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you define naturally breaks the data into some number of groups g. However, you
actually have some number of machines m at your disposal, and you typically have to
design your mapping function, choosing a g and associated grouping, without knowing
m. You may know a range of possible values for m, or it may vary widely depending on
the availability of machines at the time you run the map reduce computation (and the
availability is typically not under your control). As more and more computing moves to
the “cloud”, that is, moves to large shared data centers, we anticipate that this problem
of grouping work without knowing the number of machines will become more widespread.

In this paper, we consider one of the simplest scheduling problems – minimizing
makespan on identical parallel machines. We choose this problem as a proof of concept
and many other objectives could have been chosen. We consider the following specific
model. We are given a set of n jobs, J , with known processing times p(j), and a number
M , which is an upper bound on the number of machines we might have. An algorithm
must commit, before knowing how many machines there are, to grouping the jobs into
M packs, where each job is assigned to exactly one of the packs and some packs are
possibly empty. We call this step the packing step. Only then, do we learn the number
of machines m. We now need to compute a schedule, with the restriction that we must
keep the packs together, that is, we will assign one or more packs to each machine.
We call this step the scheduling step. As in other robust problems, we want to do well
against all possible numbers of machines. We therefore evaluate our schedule by the
ratio of the makespan of our schedule, ALG(m,M), to the makespan of a schedule that
knew m in advance, optm, taking the worst case over all possible values of m. If an
algorithm always provides a ratio of at most α, where α = max

1≤m≤M
ALG(m,M)

optm
, we call it

α-robust. Note that when the number of machine is given, then there exists a polynomial
time approximation scheme [3, 8] and a simple 4/3-approximation algorithm [6] (longest
processing time).

1.1 The Main Results

Our first result is on an introductory problem. We assume that we have an optimal
schedule on M machines, OPT (M), as our packs. We then ask how well these packs
can be scheduled on M/2 machines, compared to optM/2, the unconstrained optimal
schedule for M/2 machines. We show that this ratio is at most 2 and give an example
where it is 2. This ratio can be improved if we choose among all optimal schedule, the
one that has the lowest Lq norm of the machine loads, for finite q > 1. Starting from
these packs, we show that the ratio is now 3/2, and that this analysis is tight.

We next consider the general problem of scheduling the packs not on M/2 machines,
but on any number m ∈ [1,M ]. Here we give an algorithm that is 2-robust, where we
use OPT (M) as our packing. The 2 is tight, given that OPT (M) is our packing, but
it is possible that a better bound could be found using a different initial packing. We
explore this possibility and provide positive results in two directions. First, we consider
the case where the jobs are all infinitesimal, and give a 3/2-robust algorithm. This result
shows that some of the difficulty comes from dealing with large jobs. Finally, we consider
the case where we have an upper and a lower bound on the number of machines. In
particular, we consider the case where we know that the eventual number of machines
will be between M/2 and M , and give an algorithm which gives a robust ratio of 9

5(1+ε),
breaking the simple 2(1 + ε) bound. This algorithm is more involved than the previous

181



ones, and demonstrates how a more careful investigation of the packing and scheduling
steps can lead to improved bounds.

In this algorithm, we first calculate the optimal schedule for every fixedm ∈ [M/2,M ]
within a factor of 1 + ε using the algorithm in [3]. Denote opt′k the approximation to
the optimal makespan for a fixed k. Then we follow three steps. First we choose one
or more of these schedules as bases. We then take these bases, which are on some
number k ≤ M machines and separate the jobs that were scheduled on some machines
into a larger number of sets, which we call packs. After learning how many machines
we have, we place the packs on the machines. We remark that in separation procedure
we provide three separation algorithms with good properties which could be useful in
related problems. For each of these steps, there are multiple cases to consider. We first
handle two of the easier cases – when opt′M is large relative to opt′M/2 and when there

is a K such that opt′K+1 is much smaller than opt′K . Note that the two cases can be
easily extended to the case when m ∈ [αM,M ], where α ∈ (0, 1). We then handle the
remaining cases by considering the value of opt′M/2 relative to opt′3M/4.
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Faster Approximation Schemes for the Two-Dimensional

Knapsack Problem

Sandy Heydrich (Speaker) ∗ Andreas Wiese †

1 Introduction

We study the two-dimensional geometric knapsack problem for squares: Given a set of
input items, which are squares of side lengths between 0 and 1, each with an associated
weight or profit, and a knapsack of size N×N , our goal is to find an axis-aligned packing
of a maximum weight subset of the items into the knapsack without overlappings. This is
a natural generalization of the fundamental, widely applicable one-dimensional knapsack
problem. There is a polynomial time (1+ε)-approximation algorithm for it (i.e., a PTAS)

but the running time of this algorithm is triple exponential in 1/ε, i.e., Ω(n22
1/ε

) [4]. A
double or triple exponential dependence on 1/ε is inherent in how this and several other
algorithms for other geometric problems work. In this paper, we present an EPTAS
for knapsack for squares, i.e., a (1 + ε)-approximation algorithm with a running time of
Oε(1) · nO(1). In particular, the exponent of n in the running time does not depend on
ε at all. Since there can be no FPTAS for the problem (unless P = NP, [6]) this is the
best kind of approximation scheme we can hope for. To achieve this improvement, we
introduce two new key ideas: We present a fast method to guess the Ω(221/ε) relatively
large squares of a suitable near-optimal packing instead of using brute-force enumeration.
Secondly, we introduce an indirect guessing framework to define sizes of cells for the
remaining squares. In the previous PTAS each of these steps needs a running time of

Ω(n22
1/ε

) and we improve both to Oε(1) · nO(1).

2 Techniques

Our result builds on the existing PTAS for the problem given by Jansen and Solis-
Oba [4]. This PTAS (and many other algorithms for geometric problems, e.g., [1, 5, 2])
applies the well-known shifting technique to distinguish squares into large and small
squares. Eventually, it is shown that there is a (1 + ε)-approximative packing which is
structured into Oε(1) large squares and Oε(1) cells. However, due to the shifting step

both quantities can be Ω(221/ε). Roughly speaking, the PTAS in [4] then guesses the

large squares and the sizes of the cells in time O(n22
1/ε

) each. Then it assigns the small
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squares to the cells via an instance of the generalized assignment problem [7] and finally
packs large squares and cells into the knapsack. We need to improve the guessing of the
large squares as well as the guessing of the cells in order to obtain an EPTAS.

Guessing large squares fast. Since there can be up to Ω(221/ε) large squares we do

not want to simply enumerate over them since there are nΩ(22
1/ε

) possibilities. Instead,
we show that by losing a factor 1 + ε in the approximation guarantee we can assume
that the squares have only Oε(log n) different profits and that each profit class with large
squares in the solution contributes at most Oε(1) squares to the solution in total. Then,
we can show that there are only Oε(log n) squares in total that can potentially be large.
This reduces the guessing time to (log n)Oε(1) = Oε(1) · nO(1).

Guessing cell decomposition via indirect guessing. Roughly speaking, there are
two types of cells in the decomposition given by [4]. The first type are block cells that
contain only squares that are much smaller than the cell itself (in both dimensions). For
those we show that by losing a factor of 1 + ε we can round down their heights and
widths to powers of 1 + ε. This allows us to reduce the number of possibilities for those
quantities to Oε(log n) and thus to (log n)Oε(1) for all cells in parallel.

The other cells (elongated cells) are further structured and the most complicated
parts are row subframes. Each of them has the property that its height equals the
height of some input square and inside it squares are lined up next to each other but
never on top of each other. Moreover, for the height of the row subframes there are
only Oε(1) (unknown) values k1, k2, ... arising in the whole instance (as they stem from
a harmonic grouping step). If we knew these values kj then we would be essentially
done. The PTAS in [4] just guesses them directly and afterwards assigns all squares into
all subframes and all block cells. We cannot afford to guess all values kj directly since
a priori there are n possibilities for each of them and we cannot afford nOε(1) guesses.
Instead, we guess them indirectly. Intuitively, for a given value of x we ask ourselves:
how much profit would we obtain from subframes of height k1 if k1 was equal to x? Let
this value be described by the function p1(x). The larger x is, the more profit we could
achieve since then more input squares would fit into these subframes. By losing a factor
of 1 + ε in the objective it suffices to allow only values of x where this profit increases by
a factor of 1 + ε; we can find these values by inspecting the function p1(x). This allows
us to iteratively guess the values kj such that for each of them there are only Oε(log n)
possibilities. In particular, this interlaces the guessing of the subframe heights with the
packing of the squares, instead of doing one after the other like in [4].

If we only have one such elongated cell, we can directly compute the function p1(x)
and find the candidate values for k1 from it. However, in the general case, we need to
compute an approximation for this function using an LP and a rounding scheme inspired
by [3], as the problem of computing p1(x) is a generalization of the multi-dimensional
knapsack problem.
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On Minimizing the Makespan With Bag Constraints

Syamantak Das (Speaker) ∗ Andreas Wiese †

1 Introduction

Minimizing the makespan is a classical problem in scheduling [2, 3]. Given a set of
machines M and set of jobs J , we seek to assign each job to a machine. In the setting
where all machines are identical, the processing time of each job j is given by a value
pj for each job j. For unrelated machines the processing time of a job j can depend
on the machine i on which it is scheduled. In this case the input contains a value
pij ∈ R+

0 ∪ {∞} for each combination of a machine i and a job j. The objective is
to minimize the makespan, i.e., the maximum load of a machine i which is the total
processing time of jobs assigned to i. The problem is well-studied, for identical machines
it is strongly NP-hard and there are PTASs [4] and even EPTASs, e.g., [5, 6]. For
unrelated machines there is a 2-approximation algorithm due to Lenstra, Shmoys, and
Tardos [7], an improvement to 2 − 1/m due to Shchepin and Vakhania [8], and a lower
bound of 3/2− ε [7].

In practice, one often finds side constraints in addition to the above scheduling setting
that make the problem harder. A typical constraint is that some jobs have to be assigned
on different machines. For instance, on-board computers of aeroplanes typically have
several CPUs (modeled as machines) and for system stability considerations some tasks
need to be executed on different CPUs [1]. The idea is that if one CPU fails then the plane
still continues to operate safely. To model this, in this paper we assume that the input
jobs are partitioned into bags J = B1∪̇B2∪̇...∪̇Bb and that no two jobs from the same
bags are allowed to be assigned on the same machine. We call these new requirements
the bag-constraints. In this paper we study the problem of minimizing the makespan on
identical and unrelated machines with bag-constraints.

1.1 Identical machines

The known (E)PTASs [5, 6, 4] for minimizing the makespan on identical machines follow
the idea of enumerating the solution for large jobs, e.g., jobs that are larger than ε ·OPT ,
and then adding the small jobs via a greedy algorithm. More precisely, one enumerates
patterns for the large jobs that indicate how many large jobs of each size are assigned
on each machine. The large jobs are then assigned according to these patterns and it
does not matter which exact job is assigned to which slot of each pattern as long as the
size of the slot is respected. In the case of bag-constraints this unfortunately does not
work directly anymore. One can still enumerate the mentioned patterns and, with some
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0 1 0 1 2 −O(ε)

Figure 1: Left: an optimal schedule for the given instance. The bold lines indicate the
enumerated pattern for the big jobs, all of them having size ε. The colors show the
different bags of the jobs. Each white (striped) job j is in a (private) bag that contains
only j. Right: a schedule in which the big jobs are assigned according to the same
pattern but differently than in OPT . Thus, all non-big jobs have to be assigned to the
last machine in order to satisfy the bag-constraints. This yields an approximation ratio
of 2−O(ε).

reasonable additional effort, assign the large jobs to them such that they respect the bag-
constraints. However, we cannot guarantee that the large jobs are assigned exactly like
in the optimal solution. It could be that the jobs from the different bags are distributed
completely differently on the machines than in the optimal solution (while still respecting
the enumerated slots). In fact, there are instances for which the above procedure can
lead to an assignment of the large jobs such that any solution for the remaining jobs has
a makespan of at least (2−O(ε))OPT , see Figure 1 for an example.

Hence, we need additional ideas for the setting with bag-constraints. First, we observe
that in the mentioned example many bags have relatively many large jobs (more than
ε · m many). There can be only Oε(1) such large bags and hence we can afford to be
more careful for them when we enumerate their large jobs. Indeed, we manage to assign
the large jobs in such bags like some optimal solution. We assign the all other large jobs
according to the enumerated pattern such that we respect the bag-constraints. To assign
the remaining jobs, we split them into medium and small jobs such that the medium jobs
have small total processing time (at most εOPT ·m). We find a way to assign the latter
to the machines such that via some swapping and charging arguments we can guarantee
that for the remaining small jobs there exists a solution with small overall makespan.
For the small jobs the argumentation is again not as easy as without the bag-constraint
since some machines already have jobs from some bags which prevents small jobs of such
bags to be assigned to them. We solve the remaining problem with a combination of a
non-trivial dynamic programming algorithm and a modified greedy routine.

Theorem 1 There is a PTAS for minimizing the makespan on identical machine with
bag-constraints.

1.2 Unrelated machines

For makespan minimization on unrelated machines, there exists the LP-based 2- and
(2−1/m)-approximation algorithms [7, 8]. The bag-constraints induce a linear constraint
for each combination of a bag and a machine. Thus, it seems natural to enhance the
normal LP by these constraints and try to adapt one of the known rounding algorithms.
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However, in this paper show that this is deemed to fail. On the other hand, we show
that a randomized rounding algorithm yields a O(log n/ log logn)-approximation.

Theorem 2 For minimizing the makespan under restricted assignments with bag-
constraints there can be no (log n)1/4−ε-approximation algorithm for any ε > 0 unless
NP ⊆ ZPTIME(2(logn)

O(1)
).

Thus, in contrast to the case of identical machines we see here an increase in com-
plexity due to the bag-constraints. However, we identify a special case of the restricted
assignment setting where we can do better than in the general case: if all jobs from
each bag can be assigned to exactly the same set of machines then we can give a 8-
approximation algorithm based on the above mentioned LP. For this we need several
novel ideas on top of the above mentioned known rounding techniques.

Theorem 3 There is a 8-approximation algorithm for minimizing the makespan in the
restricted assignment case if for each bag all jobs in the bag can be assigned to the same
set of machines.
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Hybrid Adaptive Particle Swarm Optimization Algorithm

for the Permutation Flowshop Scheduling Problem

Yannis Marinakis (Speaker) ∗ Magdalene Marinaki †

1 Introduction

The finding of suitable values for all parameters of a Particle Swarm Optimization (PSO)
algorithm is a crucial issue in the design of the algorithm. A trial and error procedure is
the most common way to find the parameters but, also, a number of different procedures
have been applied in the past. In this paper, an adaptive strategy is used where random
values are assigned in the initialization of the algorithm and, then, during the itera-
tions, the parameters are optimized together and simultaneously with the optimization
of the objective function of the problem. This approach is used for the solution of the
Permutation Flowshop Scheduling Problem. The algorithm is tested in 120 benchmark
instances and it is compared with a number of algorithms from the literature.

Particle Swarm Optimization (PSO) is a population-based swarm intelligence
algorithm that was originally proposed by Kennedy and Eberhart [3]. In the literature
and for the various variants of the PSO algorithm, authors have proposed different
ways for calculating the main parameters of the algorithms. The most common way
is to use the parameters that most researchers have used in the literature. Another
way is to test for some instances a number of different sets of parameters, find the best
values of the parameters for these instances and, then, use these values for the rest of the
instances. Nowadays, a number of algorithms have been proposed for automated tunning
of the parameters inside the procedure. Most of the papers are using an adaptive way to
increase or decrease through the iterations the inertia factor, the acceleration coefficients
or both. In all researches, the equations used to adapt the selected parameters are not
the same, however, the main idea is the same. Another way to adapt some parameters
(usually the inertia weight) is by using a fuzzy system. Other more efficient adaptive
strategies where, also, the population size is adapted, have been presented.

In this paper, a new adaptive strategy denoted as Hybrid Adaptive Particle
Swarm Optimization (HAPSO) algorithm is presented. All parameters of the Par-
ticle Swarm Optimization algorithm (acceleration coefficients, iterations, local search
iterations, upper and lower bounds of the velocities and of the positions and number
of particles) are optimized during the procedure and, thus, the algorithm works inde-
pendently and without any interference from the user. All parameters are randomly
initialized and, afterwards, during the iterations the parameters are adapted using three
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different conditions, the first is used for all parameters except the number of particles,
the second is used for the increase of the number of particles and the third is used for
the decrease of the number of particles. We applied the idea in a classic Constriction
Particle Swarm Optimization algorithm [1].

The proposed algorithm is tested for the solution of the Permutation Flowshop
Scheduling Problem (PFSP) [2, 5]. The selection was made for a number of reasons.
One reason is that it is an interesting NP-hard problem, another reason is that there
is a number of benchmark instances in the literature that could be used for testing the
algorithm and as the main subject of this paper is the experimental analysis of the algo-
rithm in a problem with as many instances as possible, the existence of a benchmark set
of 120 instances it gave us the opportunity to test our algorithm in data sets with vary-
ing number of variables and, thus, to see the performance of the algorithm in instances
with different sizes. The third reason is that we have published in the past a paper [4]
for the same problem with PSO variants and parameters of the algorithms calculated
in the beginning of the process and, thus, it would be interesting to make comparisons
with these approaches. Finally, there is a large number of publications in the literature
for solving this problem with heuristic, metaheuristic and evolutionary algorithms and,
thus, it was easy to compare our results with the results of other algorithms from the
literature.

2 Results

The algorithm (implemented in Fortran 90) was tested on the 120 benchmark instances
of Taillard. In these instances, there are different sets having 20, 50, 100, 200 and 500
jobs and 5, 10 or 20 machines. There are 10 problems inside every size set. In total,
there are 12 sets and these are: 20 × 5 (i.e. 20 jobs and 5 machines), 20 × 10, 20 ×
20, 50 × 5, 50 × 10, 50 × 20, 100 × 5, 100 × 10, 100 × 20, 200 × 10, 200 × 20 and
500 × 20. The efficiency of the HAPSO algorithm is measured by the quality of the
produced solutions. The quality is given in terms of the relative deviation from the best
known solution, that is ω = (cHAPSO−cBKS)

cBKS
%, where cHAPSO denotes the cost of the

solution found by HAPSO and cBKS is the cost of the best known solution. To test the
performance of the proposed algorithm we applied HAPSO (and the other algorithms
used in the comparisons) 10 times to each test instance.

In Table 1, except of the results of the proposed algorithm, the results of other five
algorithms based on Particle Swarm Optimization are presented. All algorithms are
variants of PSO with local and global neighborhood topologies and they all presented
and analyzed in [4]. In Table 1, the average quality (Q) and the average CPU times (T )
in seconds of the proposed algorithm and of the other five algorithms are presented. In
Table 2, a comparison with other algorithms from the literature is performed. There is
a number of heuristic and metaheuristic algorithms that have been applied for finding
of the makespan in a PFSP. Table 2 presents the average quality of the solutions of the
proposed algorithm (HAPSO) and the average quality of other 11 algorithms from the
literature. The algorithms are: a variant of the classic NEH algorithm (NEHT), five
genetic algorithms (SGA, MGGA, ACGA, GA-VNS and SGGA), three versions of the
Particle Swarm Optimization (PSO1, CPSO, PSOENT) and a Differential Evolution
(DDE) algorithm. For more informations about these algorithms please see [4]. From
these tables we can see that the proposed algorithm gives very satisfactory and, in most
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Table 1: Comparisons of the results (average qualities) of HAPSO with the other five
algorithms in Taillard benchmark instances for the PFSP

HybPSO RGPSO LNPSO RLNPSO PSOENT HAPSO
Q T Q T Q T Q T Q T Q T

20 × 5 0.00 4.15 0.00 4.08 0.00 4.05 0.00 4.02 0.00 3.45 0.00 1.58
20 × 10 0.15 15.15 0.15 18.12 0.08 16.35 0.11 15.5 0.07 15.25 0.09 11.21
20 × 20 0.31 24.85 0.08 24.5 0.09 24.65 0.11 25.15 0.08 24.52 0.07 18.35
50 × 5 0.20 8.25 0.07 7.45 0.05 7.52 0.06 7.39 0.02 6.15 0.05 5.24
50 × 10 2.20 23.45 2.34 23.54 2.05 24.18 2.29 26.21 2.11 23.55 2.01 20.15
50 × 20 3.81 45.28 3.59 44.15 3.50 46.5 3.51 48.5 3.83 44.25 3.20 39.22
100 × 5 0.19 22.15 0.13 22.58 0.11 23.15 0.11 24.18 0.09 22.85 0.14 18.12
100 × 10 1.33 65.25 1.21 64.35 1.23 62.28 1.29 61.28 1.26 60.35 1.17 51.11
100 × 20 4.36 125.35 4.37 135.48 4.55 140.24 4.21 139.28 4.37 131.15 4.13 118.21
200 × 10 1.37 122.85 1.12 125.48 1.15 126.35 1.20 125.44 1.02 124.18 1.06 111.21
200 × 20 4.62 258.46 4.37 255.24 4.45 259.35 4.66 261.28 4.27 255.42 4.27 242.34
500 × 20 3.21 410.18 2.95 408.25 2.74 415.35 2.97 412.24 2.73 409.54 3.43 380.31
Average 1.81 93.78 1.70 94.43 1.67 95.83 1.71 95.87 1.65 93.38 1.63 84.75

cases, better results compared either with other PSO algorithms or with algorithms from
the literature.

Table 2: Comparisons of the results (average qualities) of HAPSO with other algorithms
from the literature in Taillard benchmark instances for the PFSP

HAPSO PSOENT NEHT SGA MGGA ACGA SGGA DDE CPSO GMA PSO2 GA-VNS
20 × 5 0.00 0.00 3.35 1.02 0.81 1.08 1.1 0.46 1.05 1.14 1.25 0
20 × 10 0.09 0.07 5.02 1.73 1.4 1.62 1.9 0.93 2.42 2.3 2.17 0
20 × 20 0.07 0.08 3.73 1.48 1.06 1.34 1.6 0.79 1.99 2.01 2.09 0
50 × 5 0.05 0.02 0.84 0.61 0.44 0.57 0.52 0.17 0.9 0.47 0.47 0
50 × 10 2.01 2.11 5.12 2.81 2.56 2.79 2.74 2.26 4.85 3.21 3.6 0.77
50 × 20 3.20 3.83 6.26 3.98 3.82 3.75 3.94 3.11 6.4 4.97 4.84 0.96
100 × 5 0.14 0.09 0.46 0.47 0.41 0.44 0.38 0.08 0.74 0.42 0.35 0
100 × 10 1.17 1.26 2.13 1.67 1.5 1.71 1.6 0.94 2.94 1.96 1.78 0.08
100 × 20 4.13 4.37 5.23 3.8 3.15 3.47 3.51 3.24 7.11 4.68 5.13 1.31
200 × 10 1.06 1.02 1.43 0.94 0.92 0.94 0.8 0.55 2.17 1.1 - 0.11
200 × 20 4.27 4.27 4.41 2.73 3.95 2.61 2.32 2.61 6.89 3.61 - 1.17
500 × 20 3.43 2.73 2.24 - - - - - - - - 0.63
Average 1.63 1.65 3.35 1.93 1.82 1.84 1.85 1.37 3.40 2.35 2.40 0.4
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On Scheduling Coflows∗

Saba Ahmadi Samir Khuller (Speaker) Manish Purohit
Sheng Yang

1 Introduction

Chowdhury and Stoica [3] introduced coflows as an effective abstraction to represent the
collective communication requirements of a job. We consider the problem of schedul-
ing coflows to minimize weighted completion time and give improved approximation
algorithms for this basic problem.

The communication phase for a typical application in a modern data center may
contain hundreds of individual flow requests, and the phase ends only when all of these
flow requests are satisfied. A coflow is defined as the collection of these individual flow
requests that all share a common performance goal. The underlying data center is
modeled as a single m ×m non-blocking switch that consists of m input ports and m
output ports. We assume that each port has unit capacity, i.e. it can handle at most
one unit of data per unit time. Modeling the data center itself as a simple switch allows
us to focus solely on the scheduling task instead of the problem of routing flows through
the network. Each coflow j is represented as a m ×m integer matrix Dj = [djio] where

the entry djio indicates the number of data units that must be transferred from input
port i to output port o for coflow j. Figure 1 shows a single coflow over a 2 × 2 switch.
For instance, the coflow depicted needs to transfer 2 units of data from input a to output
b and 3 units of data from input a to output d. Each coflow j also has a weight wj that
indicates its relative importance and a release time rj .

A coflow j is available to be scheduled at its release time rj and is said to be completed
when all the flows in the matrix Dj have been scheduled. More formally, the completion
time Cj of coflow j is defined as the earliest time such that for every input i and output

o, djio units of its data have been transferred from port i to port o. We assume that
time is slotted and data transfer within the switch is instantaneous. Since each port
can process at most one unit of data in each time slot, a feasible schedule for a single
time slot can be described as a matching. Our goal is to find a feasible scheduling that
minimizes the total, weighted completion time of the coflows, i.e. minimize

∑
j wjCj .

Related Work: Although coflow aware network schedulers have been found to perform
very well in practice in both the offline [5] and online [4] settings, no O(1) approximation
algorithms were known even in the offline setting until recently. Since the coflow schedul-
ing problem generalizes the well-studied concurrent open shop scheduling problem, it is
NP-hard to approximate with a factor better than (2− ε) [1, 11].

∗University of Maryland, College Park MD 201742, USA.
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Figure 1: An example coflow over a 2 × 2 switch. The figure illustrates two equivalent
representations of a coflow - (i) as a weighted, bipartite graph over the set of ports, and
(ii) as a m×m integer matrix.

For the special case when all coflows have zero release time, Qiu, Stein and Zhong

[10] obtain a deterministic 64
3 approximation and a randomized (8 + 16

√
2

3 ) approxima-
tion algorithm for the problem of minimizing the weighted completion time. For coflow
scheduling with arbitrary release times, Qiu et al. [10] claim a deterministic 67

3 approxi-

mation and a randomized (9+ 16
√
2

3 ) approximation algorithm. We demonstrate a subtle
error in their proof that deals with non-zero release times. We show that their techniques
in fact only yield a deterministic 76

3 -approximation algorithm for coflow scheduling with
release times. However their result holds for the case with no release times.

By exploiting a connection with the concurrent open shop scheduling problem, Luo
et al. [8] claim a 2-approximation algorithm for coflow scheduling when all the release
times are zero. Unfortunately, their proof too is flawed and the result does not hold.

2 Our Contributions and Techniques

The main algorithmic contribution of our paper is a combinatorial algorithm for the
offline coflow scheduling problem with improved approximation guarantees.

Theorem 1 There exists a deterministic, combinatorial, polynomial time 5-
approximation algorithm for coflow scheduling with release times.

Theorem 2 There exists a deterministic, combinatorial, polynomial time 4-
approximation algorithm for coflow scheduling without release times.

The first stage of our algorithm exploits the connection between the well-studied
concurrent open shop scheduling [9, 2] (also called as order scheduling [7] ) and the
coflow scheduling problem. In the concurrent open shop problem, we have a set of
m machines and each job j with weight wj is composed of m tasks {tji}mi=1, one on
each machine. A job j is said to be completed once all its tasks have completed. A
machine can perform at most one unit of processing at a time and the goal is to find
a feasible schedule that minimizes the total weighted completion time of jobs. Indeed,
the concurrent open shop scheduling problem can be viewed as a special case of coflow
scheduling when all the demand matrices Dj are diagonal [5]. At a first glance, it appears
that coflow scheduling is much harder than concurrent open shop. Surprisingly, we show

193



that via a similar LP relaxation as for the concurrent open shop problem, we can design
a primal-dual algorithm to obtain a good permutation of the coflows. Our primal-dual
algorithm is inspired by Davis et al. [6] and Mastrolilli et al. [9]. As a side effect, our
algorithm also gives the first known combinatorial 3-approximation for concurrent open
shop scheduling with release times.

However, simply obtaining a good permutation of the coflows is not sufficient to
obtain a good schedule as sequentially scheduling these coflows independently can lead
to large completion times for the later coflows. In the second stage of our algorithm,
we move some flows from coflows that are later in the permutation to an earlier coflow.
By carefully moving only those flows that would not delay the total completion time of
the preceding coflow, we show that sequentially scheduling these postprocessed coflows
leads to a provably good coflow schedule.
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A Branch and Bound Approach for Single Machine

Scheduling in the Automotive Supply Chain

Paul Göpfert (Speaker) ∗ Stefan Bock †

1 The Scheduling Problem

In this talk, we consider a single machine scheduling problem that can be classified by
the three field notation of [4] as follows:

1|setup, rm, chains, δj |
∑

wjCj . (1)

The scheduling problem is motivated by a real-world decision problem faced by a sup-
plier in an automotive industry. The company operates a highly automated production
line consisting of several stations for the assembly of car components. Due to mass
customization, a considerable number of different component types is produced by this
machine, in what follows, denoted as product versions. Changing from one product ver-
sion to another induces setup activities on all stations that are affected by a change of
the raw materials build into the components. This leads to sequence dependent setup
times (setup) between jobs of different product versions. Before a job is released the
needed raw materials have to be available (rm). The actual release date of a job in the
schedule is therefore determined by the maximum of the makespan for the scheduled
predecessors and the earliest point in time that ensures material availability after pro-
cessing all preceding jobs. All jobs of a single product version have to be produced in
EDD-sequence, i. e. in sequence of non-decreasing due dates. This results in a set of
chain-based job-precedence relations. As the supplier has to guarantee a timely delivery,
deadlines (δj), either given by the end manufacturers or derived from the subsequent
production stages, have to be fulfilled and no tardiness is allowed. The objective of the
considered scheduling problem pursues the finding of a feasible production schedule that
minimizes the total weighted completion time of all jobs.

Since some included subproblems regarding either the presence of deadlines [7] or
the need for availability of raw materials [3] are proven to be NP-hard, this also applies
to the extended problem.

∗pgoepfert@winfor.de. Schumpeter School of Business and Economics, Bergische Universität Wup-
pertal, Gaußstraße 20, 42119 Wuppertal, Germany.
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2 A Branch and Bound Approach

The aim of our research is the development of an efficient Branch and Bound procedure
for this problem. The enumeration process is done in forward direction, in every new
node of the tree a further job is added to the partial schedule represented by the currently
branched node. Dominance criteria and tests for the fulfillment of necessary conditions
for the existence of a feasible extension to a complete schedule speed up the enumeration
process.

For the purpose of the calculation of lower bounds, we may resort on subproblems
included in this scheduling problem. Branch and Bound approaches from the litera-
ture for problems such as 1|δj |

∑
wjCj ([9]), 1|rj |

∑
wjCj ([1]) and 1|rj , δj |

∑
wjCj ([8])

therefore provide lower bounds also for the scheduling problem under consideration.

The chain restrictions together with the time windows resulting from the material
availability limitations and deadlines allow us to derive an arbitrary precedence graph
G. As the scheduling problem 1|prec|∑wjCj with arbitrary precedences is NP-hard
([6]), we may seek for polynomial-time solvable classes of precedence relations contained
in G to obtain further bounds for the problem. An example for this technique is the con-
struction of a vertex-series-parallel (VSP) suborder, that allows us to use the O(n log n)-
polynomial-time algorithm of Lawler [6] for this class of precedence relations. This idea
is also mentioned in [2], whereas we take another way to generate the needed VSP-
suborder.

Another possibility to obtain a lower bound for scheduling problems with an total
cost objective such as

∑
(wj)Cj or

∑
(wj)Tj is the calculation of an estimate CLB

j,p on
the completion time for every job j ∈ J , if job j is placed on position p ∈ 1, . . . |J | of
the schedule. The application of these estimates in order to calculate a lower bound by
consideration of the resulting linear assignment problem has already been proposed by
[5].

All the lower bounds mentioned so far differ in the addressed properties of the prob-
lem, the effort for their calculation and their quality.

We investigate the impact of the different bounding techniques on the overall effi-
ciency of the Branch and Bound procedure for the considered optimization problem.
Results on artificial instances with up to 75 jobs and 15 products as well as different
settings for time windows and setup times are presented.
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Delayed-Clairvoyant Scheduling

Sorrachai Yingchareonthawornchai (Speaker) ∗ Eric Torng †

1 Introduction

In this paper, we introduce a new model of partial clairvoyance which we call delayed
clairvoyance for online scheduling. In traditional clairvoyant scheduling, an online sched-
uler learns a job’s processing time once it is released. In nonclairvoyant scheduling, an
online scheduler only learns a job’s processing time once it is completed. Bender et al.
introduced an intermediate model of clairvoyance which they called “semi-clairvoyant
scheduling” where the online scheduler learns the class or approximate processing time of
a job once it is released and only learns the exact processing time once it is completed [2].

In delayed clairvoyance, an online scheduler is initially nonclairvoyant and becomes
clairvoyant once a job has been processed for αpi time where 0 ≤ α ≤ 1. That is, once
a job has been processed for an α fraction of its processing time, the online scheduler
learns its processing time, and we do not assume that the online scheduler knows α.
Delayed clairvoyance with α = 0 is equivalent to clairvoyance, and delayed clairvoyance
with α = 1 is equivalent to nonclairvoyance. Delayed clairvoyance can be generalized
in several ways. For example, each job could have its own αi parameter. That said, we
start with a single α parameter for all jobs and assume the scheduler is nonclairvoyant
initially.

We perform a very preliminary study of delayed clairvoyance using the problem of
online scheduling on a single machine with the goal of minimizing total flow time. For
this problem, for clairvoyant scheduling, it is well known that the Shortest Remaining
Processing Time (SRPT) algorithm is optimal. On the other hand, no nonclairvoyant
scheduling algorithm can be O(1)-competitive [4]. This is because the nonclairvoyant
scheduler can fall behind by processing the wrong jobs and thus builds up too many
extra jobs compared to the optimal algorithm. For semi-clairvoyant scheduling, Bender
et al. proved the surprising result that SRPT is not O(1)-competitive [2], and Becchetti
et al. later proved that a modified algorithm is O(1)-competitive for semi-clairvoyant
scheduling [1].

Given that SRPT is optimal when α = 0 and no online algorithm is O(1)-competitive
when α = 1, the natural question is for what value of α does this problem become hard.
Is it hard for any α > 0? Is there a threshold where we can be constant competitive and
then suddenly not?

We make initial progress towards answering this question. We consider the following
algorithmic framework. At any time t, let A(t) denote the remaining jobs. We divide
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A(t) into two classes: early jobs where we do not know their processing times and late
jobs where we do know their processing times. Let e(t) and l(t) denote the number
of early jobs and late jobs, respectively, at time t. We focus on algorithms that apply
e(t)/|A(t)| fraction of the processor to early jobs and l(t)/|A(t)| fraction of the processor
to late jobs. For the late jobs, we use SRPT. For the early jobs, we use a nonclairvoyant
algorithm. In this paper, we consider round robin (RR). We realize this is not the best
nonclairvoyant algorithm and expect to have better results with better nonclairvoyant
algorithms by the time of MAPSP.

The resulting algorithm we study is RR+SRPT. We then use the following notation.
For any time t, let ARR(t) and AC(t) be the set of early jobs and late jobs, respectively.
Note that A(t) = ARR(t) tAC(t), where t is disjoint union.

Proposition 1. RR+SRPT is Ω(n2− 1
α )-competitive when α ≥ 0.5.

Proof Sketch. Consider only RR with α fraction of jobs’ processing time. This model
is equivalent to speed augmentation where RR’ has speed 1

α with full jobs’ processing
time. It is known that there exists an instance such that RR is Ω(n2−s)-competitive
with speed s < 2 (Theorem 2.19 in [5]). The special model for RR cannot handle this
instance, and hence RR+SRPT cannot be competitive.

In this work, we then focus on finding a smaller α so that SPRT can catch up. We
set α < 0.25 and show that it is indeed possible. Open question is whether or not
RR+SPRT is O(1)-competitive for α ∈ [0.25, 0.5).

Nonclairvoyant jobs have initial processing time to be αpi(t) by definition of our
model. Let RR’ be a RR algorithm with 1

α speed and job’s processing time is pi(t). The
following key Lemma is useful in our main result, which can be easily verified.

Lemma 2. At any time t, |ARR′(t)| = |ARR(t)|
Theorem 3. RR+SRPT is O(1)-competitive when α < 0.25.

Proof. We consider RR’+SRPT where RR’ has speed 1
α but works with full size of job.

After RR’ finished processing, such job will be processed with SRPT with ordinary speed
with processing time of 1−α fraction. By Lemma 2, the competitiveness of RR’+SRPT
implies RR+SRPT.

Let α = 1
4+ε for ε > 0.Denote pai (t), p

o
i (t) as remaining processing time of job i

in the algorithm RR’+SRPT and optimal algorithm, OPT, respectively. Let zi(t) =
max(pai (t) − poi (t), 0) be the lag behind OPT. We give the following potential function.
A detailed potential function analysis technique can be found at [3].

Φ(t) =
4

ε

∑

Ji,Jj∈ARR(t)

min(zi(t), zj(t)) + 8(1 +
1

ε
)

∑

Ji∈AC(t)
increasing order

(n− i+ 1)zi(t)

Job Arrival Condition. There is no change in potential function.
Job Completion Condition. When RR finishes job Ji on its queue, Ji’s remaining
processing time of 1−α fraction is revealed to SRPT’s queue. In this case, the potential
will increase by the rank of Ji relative to the remaining size of the queue in SRPT. One
can show that total change of such increase is at most (1− α)OPT .

Running Condition. We consider the change in potential function due to RR’s
processing (We denote RR’ as RR for convenience). There are |ARR(t)|2 terms in the first
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term of Φ(t) where each term is processing with speed (4 + ε)/A(t). So the change due

to RR is at most −4(4+ε)
ε
|ARR(t)|2
|A(t)| . We will consider the change of potential function due

to SPRT ’s processing later when necessary. Now we consider the change of Φ(t) due to
OPT ’s processing. Without loss of generality, assume that OPT processes one process at
a time. Hence, the potential function will increase by either first term or second term. We
consider the maximum of both. That is, for the first term in Φ(t), OPT will affect at most
2|ARR(t)| terms. So, Φ(t) will increase by 8

ε |ARR(t)|. For second term, OPT will process
on the least remaining jobs in OPT (t). Hence, the change is 8(1 + 1

ε )|AC(t) ∩OPT (t)|.
The total change due to OPT is then max{8

ε |ARR(t)|, 8(1 + 1
ε )|AC(t) ∩ OPT (t)|} We

consider three cases. Case (1): if |ARR(t)| ≥ A(t)/2. We have that the change due

to RR’s processing is −4(4+ε)
ε
|ARR(t)|2
|A(t)| ≤ −2(4+ε)

ε |ARR(t)|. The change due to OPT’s

processing in this case is max{8
ε |ARR(t)|, 8(1+ 1

ε )|AC(t)∩OPT (t)|} ≤ 8
ε |ARR(t)|+8(1+

1
ε )|OPT (t)|. Hence, the change of Φ(t) is at most

dΦ(t)

dt
≤ −2(4 + ε)

ε
|ARR(t)|+ 8

ε
|ARR(t)|+ 8(1 +

1

ε
)|OPT (t)|

≤ −2|ARR(t)|+ 8(1 +
1

ε
)|OPT (t)| ≤ −|A(t)|+ 8(1 +

1

ε
)|OPT (t)|

Hence, in case (1) we have: |A(t)|+ dΦ(t)
dt ≤ 8(1 + 1

ε )|OPT (t)|
We omit the detail of case (2) and (3), but provide high level ideas. Case (2): if

|AC(t)| ≥ 3|A(t)|/4 and |ARR(t)| ≤ |A(t)|/4. The case is similar to case (1), but we use
only change due to SRPT’s processing against OPT. SRPT can catch up OPT because
the amount of processing power is at least 3/4 which is a constant factor. We can show

that |A(t)|+ dΦ(t)
dt ≤ 8(1 + 1

ε )|OPT (t)|.
Case (3) is |A(t)|/4 ≤ |ARR(t)| ≤ |A(t)|/2. The crux is that we need to use both RR

and SRPT to pay for the potential function to obtain the same bound. This step requires
more calculation and using appropriate inequalities. |A(t)|+ dΦ(t)

dt ≤ 8(1 + 1
ε )|OPT (t)|.

Totaling from arrival condition, completion and running condition we have

|A(t)|+ dΦ(t)

dt
≤ (1− 1

4ε+ 1
+ 8(1 +

1

ε
))|OPT (t)| = O(1)|OPT (t)|

Finally, the result follows from integrating both side from t = 0 to ∞.
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Schedulability Analysis of Dependent Probabilistic

Real-Time Tasks

Slim Ben-Amor (Speaker) ∗ Dorin Maxim † Liliana Cucu-Grosjean ‡

1 Introduction

The complexity of modern architectures has increased the timing variability of programs
(or tasks). New probabilistic approaches decrease the resulting pessimism by associating
probabilities to different worst case execution time values of the programs (tasks). In
this paper, we extend the original work of Chetto et al. [3] on precedence constrainted
tasks by describing the worst case execution times by probability distributions. We
provide probabilistic schedulability conditions that decrease pessimism due to worst
case reasoning on highly variable systems.

2 Definition

Definition 1 Let X1 and X2 be two independent probability distributions and Z =
Max(X1,X2)

p(Z 6 t) = p(Max(X1,X2) 6 t)
= p(X1 6 t,X2 6 t)
= p(X1 6 t)p(X2 6 t)

=
t∑

i=min(X1)

p(X1 = i)
t∑

j=min(X2)

p(X2 = j)

If X1 and X2 are finite discrete distributions, then we obtain

p(Z = t) =
∑

max(i,j)=t p(X1 = i)p(X2 = j)

We note that Max(X1,X2) � Xi, ∀i ∈ {1, 2} with � as defined in [2].

Similarly, we define the minimum distribution Z = Min(X1,X2) with

p(Z = t) =
∑

min(i,j)=t p(X1 = i)p(X2 = j)

We note that Xi � Min(X1,X2), ∀i ∈ {1, 2}.
∗INRIA 2, rue Simone Iff Paris, France slim.ben-amor@inria.fr
†LORIA - University of Lorraine Nancy, France dorin.maxim@inria.fr
‡INRIA 2, rue Simone Iff Paris, France liliana.cucu@inria.fr
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3 Motivational Example: The Non-applicability of the
Diaz relation

A natural candidate for replacing the comparison relation ≤ in Chettos’ schedulability
test is the comparison relation � introduced by Diaz et al. [2]. We provide an example
of the non-applicability of this operator to the schedulability analysis of a task set. Let
τ = {τ1} be a task set with a single task τ1 defined by

(C1 =

(
1 3

0.9 0.1

)
,D1 =

(
2 4

0.8 0.2

)
).

In the deterministic worst case for C1 = 3 andD1 = 2, we conclude that the task set is not
schedulable (C1 > D1). Nevertheless, if we compare the CDFs FC1(t) ≥ FD1(t), ∀ t ∈ R,
then D1 � C1 implying the task set is schedulable. In conclusion, the Diaz relation
cannot replace the relation ≤ in Chetto schedulability test. Thus, we propose a new
relation in Section 3.1 that justifies Definition 1.

3.1 A new relation of comparison between two probability distribu-
tions

Based on the conclusion of the previous section we propose a new relation to compare
two probability distributions in Chetto schedulability test as follows:

p(X1 6 X2) =
∫∞
−∞ p(X1 6 t)p(X2 > t)dt =

max(X2)∑
t=min(X1)

p(X1 6 t)p(X2 > t)

=
max(X2)∑

t=min(X1)

t∑
i=min(X1)

p(X1 = i)
max(X2)∑

j=t
p(X2 = j) =

∑
i6j

p(X1 = i)p(X2 = j)

Thus, the probabilistic comparison operation is given by:

X1 6 X2 =

( X1 6 X2 X1 > X2∑
i6j

p(X1 = i)p(X2 = j) 1−∑
i6j

p(X1 = i)p(X2 = j)

)
(1)

By applying the proposed comparison to the task set τ = {τ1} with τ1 defined
in Section 3, then the task set is schedulable with an associated probability 92%. A
non-probabilistic schedulability analysis declares the system non-schedulable while its
probability of meeting the deadline is high.

4 Probabilistic model

In this section we propose a probabilistic description of the model of a task τi defined
by Ri, Ci,Di. Our probabilistic description considers the release times, the worst case
execution times and the deadlines described by discrete probability distributions and
thus a probabilistic task τi.

We provide a probabilistic formulation of Chetto equations as follows. Let τ∗ be the
task system obtained as follows:

R∗i = Max(Ri,R∗j ⊗ Cj : j → i), D∗i = Min(Di,D∗j ⊗ (−Cj) : i→ j) (2)
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Let τ∗ be the task set obtained by applying Equation (2) to all tasks of a task set τ .
From Definition 1 we obtain that R∗i � Ri, and Di � D∗i , ∀i ∈ {1, · · · , n}.

τ1

τ2

τ3

τ4

Figure 1: A graph describing the precedence
constraints of a task system

Task ri Ci di

τ1 0

(
1 2

0.9 0.1

)
3

τ2 1 2 5

τ3 0 2 4

τ4 4 3 8

Table 1: Timing parameters

After transforming this task set with the defined Min and Max operations we get an
independent probabilistic task set. The proposed transformation is applied as follows:





R∗1 = R1 =

(
0
1

)

R∗2 = Max (R2,R∗1 ⊗ C1)
R∗3 = Max (R3,R∗1 ⊗ C1)
R∗4 = Max (R4,R∗2 ⊗ C2,R∗3 ⊗ C3)





R∗1 =

(
0
1

)

R∗2 = Max

((
1
1

)
,

(
0
1

)⊗(
1 2

0.9 0.1

))

R∗3 = Max

((
0
1

)
,

(
0
1

)⊗(
1 2

0.9 0.1

))

R∗4 = Max

((
4
1

)
,

(
3 4

0.9 0.1

)
,

(
3 4

0.9 0.1

))

Moreover deadline modification Equation 2 is applied to deadlines. Then, we obtain
a transformed task set described in the table below.

Task R∗i Ci D∗i
τ1 0

(
1 2

0.9 0.1

)
2

τ2

(
1 2

0.9 0.1

)
2 5

τ3

(
1 2

0.9 0.1

)
2 4

τ4 4 3 8
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Beating the Harmonic Lower Bound for Online Bin Packing

Sandy Heydrich∗ Rob van Stee (Speaker)†

1 Introduction

In the online bin packing problem, items of sizes in (0, 1] arrive online to be packed
into bins of size 1. The goal is to minimize the number of used bins. In this paper, we
present an online bin packing algorithm with asymptotic performance ratio of 1.5815,
which constitutes the first improvement over the algorithm Harmonic++ in fifteen
years and reduces the gap to the lower bound by roughly 15%. Within the well-known
Super Harmonic framework, no competitive ratio below 1.58333 can be achieved.

The lower bound of Ramanan et al. [1] is based on inputs like the one shown in Fig.
1, which contains a medium item (size in (1/3, 1/2]) and a large item (size in (1/2, 1]).
Both of these items arrive N times for some large number N , and although they fit
pairwise into bins, the algorithm never combines them like this. No matter how fine the
item classification of an algorithm, pairs of items such as these, that the algorithm does
not pack together into one bin, can always be found.

We make two crucial changes to the Super Harmonic framework. We avoid the
lower bound construction by defining the algorithm so that it simply combines medium
and large items whenever they fit together in a single bin. Essentially, we use Any Fit
to combine such items into bins (under certain conditions specified below).

In order to benefit from using Any Fit, it is important to ensure that for each
medium type, as much as possible, it is the smallest items that are colored red. This is
because the red items are the ones that are packed alone into bins, in order to possibly
be combined with large items later. The general weakness of all Super Harmonic
algorithms is that they do not distinguish between any two items that have the same
type; after classifying the items by their size, the size is ignored. This means that the
items of any given type could arrive in such an order that the items which are colored
red are slightly larger than the blue ones. Then, when large items arrive later, they may
be too large to fit in bins with red medium items. The online algorithm then has to pack
them into new bins, even though they would have fit with blue medium items.

We will avoid this situation (as much as possible) by initially packing each medium
item alone into a bin and giving it a provisional color. After several items of the same
type have arrived, we will color the smallest one red and start packing additional medium
items of the same type together with the other items, that are now colored blue. In this
way, we can ensure that at least half of the blue items (namely, the ones that have
already arrived at the time when we select the smallest to be red) are at least as large
as the smallest red item.
∗heydrich@mpi-inf.mpg.de. Max Planck Institute for Informatics, 66123 Saarbrücken, Germany.
†rob.vanstee@uni-siegen.de. Department of Mathematics, University of Siegen, 57068 Siegen,
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1/3

0.34 0.65

Figure 1: Part of the lower bound construction from Ramanan et al. [1]. The figure
shows how one bin is packed in the optimal solution. Both of these items arrive many
times. The central idea of our algorithm is that we limit the number of times that these
“bad” patterns can be used in the optimal solution. This is how we beat the ratio of
1.58333.

Technical difficulties arise because postponing coloring decisions is not always pos-
sible or even desirable, depending on the existing packing. We carefully mark medium
items depending on how they end up packed. This allows us to bound the number of
so-called critical bins (bins that are packed as in Figure 1) in the optimal solution. This
will allow us to give a stronger lower bound on the optimal solution.

We simplify the analysis of Super Harmonic and extend it to be able to analyze
algorithms in our new framework, which we call Extreme Harmonic. We reduce
the problem of analyzing these algorithms to solving a set of knapsack problems. We
implemented a computer program which solves the knapsack problems and also does the
other necessary work, including the automated setting of many parameters, like item
sizes. As a result, our algorithm Son Of Harmonic requires far less manual settings
than Harmonic++.

Our program uses an exact representation of fractions, with numerators and denom-
inators of potentially unbounded size, in order to avoid rounding errors. We provide a
certificate and a verifier program, and we also output the final set of knapsack problems
directly to allow independent verification.

Our approach can also be applied to the original Super Harmonic framework.
Surprisingly, we find that the algorithm Harmonic++ is in fact 1.58879-competitive.
We suspect that Seiden did not prove this ratio because of the prohibitive running times
of his heuristic approach; he mentions that it took 600 hours to prove the upper bound
of 1.58889. Our program completes in less than a minute. (Computers became faster
since 2000, but not by a factor of 1000!)

Another benefit of using our approach is that this result becomes more easily ver-
ifiable as well. Furthermore, we were able to improve and simplify the parameters of
Harmonic++ to obtain a competitive ratio of 1.5886 in the old framework.

Finally, we give a lower bound of 1.5762 for any interval classification algorithm,
including ones that pack medium and large items like our algorithm. Thus fundamentally
different ideas will be needed to get much closer to the lower bound of 1.54037, which
we believe is closer to the true competitive ratio of this problem.
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On Energy Efficient Scheduling of Parallel Jobs with

Preemption

Alexander Kononov (Speaker) ∗ Yulia Kovalenko †

1 Introduction

We are given a set of parallel jobs J = {1, . . . , n}, each job j ∈ J is specified by its release
date rj , its deadline dj and its processing volume (work)Wj , and a set ofm speed-scalable
processors. In our paper we consider two basic variants of scheduling multiprocessor jobs.
In the first variant, processing of job j simultaneously requires precisely sizej processors.
In the second variant, execution of job j simultaneously needs a prespecified subset fixj
of dedicated processors. Note that the parallel execution of parts of the same job is not
allowed. Moreover the execution of each job can be interrupted and resumed without
incurring any costs or delays. According to the definitions in the literature on scheduling
theory we consider rigid tasks (jobs) and single mode multiprocessor tasks [7].

We consider the standart model in speed-scaling in which if a processor runs at speed
s then the energy consumption is sα units of energy per time unit, where α > 1 is a
constant (practical studies show that α ≤ 3). We assume that if processors execute
the same job simultaneously then all these processors run at the same speed. For each
job j ∈ J , we say that j is alive during the interval [rj , dj ]. Since processors may change
their speed, a job j may be completed faster (or slower) than the time Wj it needs to be
executed at speed 1. It is supposed that a continuous or discrete spectrum of processor
speeds is available. The goal is to find a feasible schedule respecting the release dates
and deadlines of the jobs so that the total energy consumption is minimized.

2 Related results

For the preemptive single-processor case, Yao et al. [10] proposed an optimal algorithm
for finding a feasible schedule with minimum energy consumption. The case, where there
are m available parallel processors and single-processor jobs, has been solved optimally
in polynomial time when both the preemption and the migration of jobs are allowed
[1, 3, 5, 9]. The works [1, 3, 9] are based on different reductions of the problem with
migration to maximum flow problems. As far as we know, the algorithm presented in [9]
has the best running time among the above-mentioned algorithms. A schedule is called
migratory if a job may be interrupted and resumed on the same or on another processor.

∗alvenko@math.nsc.ru. Sobolev Institute of Mathematics, ak Koptyuga 4, 630090, Novosibirsk,
Russia.
†julia.kovalenko.ya@yandex.ru Sobolev Institute of Mathematics, ak Koptyuga 4, 630090, Novosi-

birsk, Russia.
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We note that the migration of jobs is equivalent to the possibility to execute a parallel
job in different modes.

Albers et al. [2] considered the problem on parallel processors where the preemption
of jobs is allowed but not their migration. They proved that instances with agreeable
deadlines and unit-work jobs are solvable in polynomial time. For general instances
with unit-work jobs, they proved that the problem becomes strongly NP-hard and they
proposed an (αα24α)-approximation algorithm. For the case where the jobs have arbi-
trary processing volumes, the problem was proved to be NP-hard even for instances with
common release dates and common deadlines. Albers et al. [1] proposed a 2(2 − 1

m)α-
approximation algorithm for instances with common release dates, or common deadlines,
and an (αα24α)-approximation algorithm for instances with agreeable deadlines. Greiner
et al. [8] gave a generic reduction transforming an optimal schedule for the problem on
parallel processors with migration to a Bdαe-approximate solution for the problem on
parallel processors with preemptions but without migration, where Bdαe is the dαe-th
Bell number. This result holds only when α ≤ m. Cohen-Addad et al. [6] showed that
the nonmigratory variant of the problem with processor dependent work is APX-hard
even for jobs with common life intervals and work volumes in 1, 3, 4.

Bampis et al. [4] studied the heterogeneous preemptive problem on parallel processors
where every processor i has a different speed-to power function, sα(i), and both a life
interval and a processing volume of each job are processor dependent. For the migratory
variant they proposed a polynomial in problem size and 1

ε algorithm returning a solution

within an additive error ε, and for nonmigratory variant an (1 + ε)αB̃α-approximation
algorithm, where B̃α is the generalized Bell number [4].

To the best of our knowledge no one considered the speed scaling scheduling of
parallel jobs. For more information on scheduling problems with parallel jobs, we refer
the reader to the survey book by M. Drozdowski [7].

3 Our results

In this paper we present exact and approximate algorithms for preemptive speed scaling
problems with rigid jobs and single mode two-processor jobs.

Theorem 1 A
(
2− 1

m

)α−1
-approximate schedule can be found in O(n3) time for the

speed scaling problem of rigid jobs with migration and continuous spectrum of processing
speeds.

Theorem 2 1. An optimal schedule can be found for the speed scaling problem of rigid
jobs with migration and discrete spectrum of processing speeds in time polynomial in m
and the input size.
2. A schedule of energy consumption OPT + ε can be found for the speed scaling prob-
lem of rigid jobs with migration and continuous spectrum of processing speeds in time
polynomial in m, 1/ε and the input size.

We note that the running time mentioned in Theorem 2 is polynomial in the size of
the input if m is fixed and pseudo-polynomial if m is a part of the input. We also note
that the results of Theorem 2 can be adopted for problems with malleable jobs.
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Theorem 3 1. An optimal schedule can be found for the speed scaling problem with
single mode two-processor jobs and discrete spectrum of processing speeds in time poly-
nomial in the input size
2. A schedule of energy consumption OPT +ε can be found for the speed scaling problem
with single mode two-processor jobs and continuous spectrum of processing speeds in time
polynomial in 1/ε and the input size.

We also determine the computational hardness for preemptive speed scaling prob-
lems with rigid jobs and single mode multi-processor jobs and claim that most of the
NP-hardness proofs for scheduling problems with the minimization maximum lateness
criterion may be easily transformed to their speed scaling counterparts.

This research is supported by the Russian Science Foundation grant 15-11-10009.
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Robust Assignments:

Hardness, Approximability and Algorithms

David Adjiashvili ∗ Viktor Bindewald (Speaker) † Dennis Michaels ‡

1 Introduction

Many real-life planning problems require making a priori decisions before all parameters
of the problem have been revealed. An important special case of such problem arises in
scheduling or staff rostering problems, where a set of tasks needs to be assigned to the
available set of machines or personnel (resources), in a way that all tasks have assigned
resources, and no two tasks share the same resource. In its nominal form, the resulting
computational problem becomes the assignment problem on bipartite graphs.

This paper deals with a robust variant of the assignment problem modeling situa-
tions where the structure of the corresponding graph is subject to uncertainty, i.e. some
edges are vulnerable and may become unavailable after a solution has been chosen. An
optimal solution to the robust assignment problem (RAP) guarantees that all tasks can
be performed (independent of the effective structure shift) and minimizes the cost.

We conclude the introduction with a more precise description of an applicaton in the
field of Staff Scheduling and Rostering. Rostering is an important subtask of Human
Resource Management and has four different aspects: strategic, tactical, operational and
retrospective. RAP addresses the tactical dimension of rostering. The objective thereby
is to deliver a prototype schedule for a certain planning horizon (e.g. a month), which
can be used as a starting point for operative assignment decisions on a daily (or weekly)
basis. Naturally a roster is subject to uncertainty because employees may get sick or not
be able to work in a certain shift due to legal work load regulations or non-availability
of crucial equipment. Uncertainty of this kind can be incorporated into our model. A
solution to RAP enables the decision maker to choose an assignment from the solution
for the upcoming day (or week), meeting the latest needs of both, the company and
personnel.

2 Problem Definition

Given a undirected biparite graph G = (U ∪̇W,E) we call the nodes in U jobs and
the nodes in W machines. The edge set E is subject to uncertainty, described via an

∗addavid@ethz.ch. Institute for Operations Research, Department of Mathematics, ETH Zurich,
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uncertainty set U = {F1, . . . , Fk} ⊆ 2E . Each element F of U describes one possible
failure scenario. Upon emerging of scenario F , the corresponding edges are removed
from the graph G. Eventually a non-negative cost function c : 2E → R≥0 is provided.
An assignment in G is a set of non-adjacent edges from E covering every job node in U .
The Robust Assignment Problem is defined as follows.

min c(X)
s.t. ∀F ∈ U : X \ F contains an assignment,

X ⊆ E
(RAP)

In other words X ⊆ E is a solution to RAP if for each failure scenario F the subgraph
G[X]−F contains an assignment. This makes RAP a bulk-robust problem, a robustness
concept introduced in [1]. Note that unlike in many other robust optimization settings,
solutions to RAP are in general not feasible to the nominal assignment problem in the
setting considered here.

3 Our Contribution

To the best of our knowledge this optimization problem was not investigated before.

The key component for hardness and inapproximability results is the following theorem.

Theorem 1 ([2]) Minimum Set Cover can be reduced to RAP, preserving the cost.

This result implies that RAP is not only NP-hard, but also can not be approximated
with a constant guarantee under standard complexity assumptions. Our reduction uses
singleton scenario sets and for this setting we provide a randomized O(log n) polynomial
approximation algorithm in case of general cost functions and a O(1)-approximation for
uniform costs. Both algorithms match the approximability bounds known for Set Cover
asymptotically. We complete the complexity landscape by investigating the simplest
variant of RAP.

Theorem 2 ([2]) RAP is NP-hard when restricted to instances with uniform costs and
two vulnerable edges, i.e. with U = {f1, f2}.
The second part of the talk will discuss a version of RAP with uncertain machine node
set W [3].
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On the Optima Localization

in Two-Machine Routing Open Shops

Ilya Chernykh (Speaker) ∗ Ekaterina Lgotina †

1 Introduction

The routing open shop model was introduced in [1, 2]. In this model the sets of n jobs J
and m machines M are given, and machines have to perform operations of each job Jj
(with given processing times pji) in an arbitrary order similar to the classic open shop
scheduling problem [6]. The jobs are distributed among the nodes of some transportation
network represented by edge-weighted graph G. The weight τpq of edge [vp, vq] represents
the travel distance between the nodes vp and vq. The set of jobs located at some node
vk is denoted as Jk. All the machines are initially located at a predefined special node
referred to as the depot. Machines have to travel with unit speed between the nodes
of the transportation network to process their operations and to return to the depot.
Machines are allowed to use the shortest paths between the nodes therefore we may
assume that travel distances satisfy the triangle inequality.

For any schedule S value Rmax(S) denotes the makespan of S which is the time
moment of returning of the last machine to the depot after processing all the operations.
The goal is to minimize the makespan. Following the traditional three-field notation we
denote the routing open shop problem as RO||Rmax.

We assume that each node (with the possible exception of the depot) contains at
least one job. This makes it necessary for each machine to visit each node at least
once. Therefore the routing open shop with single machine is equivalent to the classic
metric TSP which is well-known to be NP-hard in strong sense. On the other hand,
a single-node routing open shop is just a plain open shop problem and is NP-hard for
three and more machines while being polynomially solvable in the two-machine case [6].
Surprisingly, the combination of those classic problems remains NP-hard even in the
simplest non-trivial case with two machines on a link (RO2|G = K2|Rmax), as proved in
[1].

Lets give a brief review of the routing open shop problem focusing on a case of two
machines (RO2||Rmax). A first 7

4 -approximation algorithm is described in [1]. It was fur-
ther improved in [4] where a 13

8 -approximation algorithm is described. This improvement
is relatively significant due to the following remark. Note that the RO2||Rmax problem
includes metric TSP as a special case. Since the best known up to date approximation
algorithm for the metric TSP is the 3

2 -approximation algorithm due to Christofides and

∗idchern@math.nsc.ru. Sobolev Institute of Mathematics, 4 Koptyug ave., Novosibirsk, 630090,
Russian Federation.
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Serdyukov, we cannot hope to achieve better than 3
2 -approximation for RO2||Rmax until

a better approximation for the metric TSP will be found. On the other hand the easy-
TSP version of the RO2||Rmax (the case when an optimal solution for the underlying
TSP is known or the time complexity of its search is not taken into account) the problem
admits a 4

3 -approximation algorithm described in [4].
In [3] the following generalization of the routing open shop problem was introduced.

In that model travel times τ ipq are specific for each machine Mi. The following hierarchy
of the travel time models was considered in [3]:

• RO||Rmax: τ ipq = τpq (identical travel times);

• RO|Qtt|Rmax: τ ipq =
τpq
si

(uniform travel times, si represents the travel speed of

machine Mi);

• RO|Rtt|Rmax: τ ipq are individual for each machine (unrelated travel times).

The following standard lower bound R̄ for RO||Rmax was introduced in [2]:

R̄
.
= max

{
`max + T ∗,max

k
(dkmax + 2τ0k)

}
,

where `max
.
= max `i = max

i

n∑
j=1

pji is the maximum machine load, T ∗ stands for the

optimum of TSP on graph G, dkmax
.
= max

k
max
j∈Jk

m∑
i=1

pji is the maximum job length from

Jk. Although (as shown in [3]) the standard lower bound cannot be directly generalized
for Qtt and Rtt cases, this still can be done if we only have two machines:

R̄2
.
= max

{
max
i

(`i + T ∗i ),max
k

(dkmax + τ10k + τ20k)

}
,

where T ∗i stands for the optimal tour length for machine Mi.

2 New results and open questions

In this talk we consider the following optima localization problem (similar to [7]). Let
I be some set of non-trivial instances of two-machine routing open shop problem (with
R̄2(I) > 0 ∀I ∈ I). Define the following critical bound

ρ∗(I)
.
= sup

I∈I

R∗max(I)

R̄2(I)
.

By that definition we have

∀I ∈ I R∗max(I) ∈ [R̄2(I), ρ∗(I)R̄2(I)]

and the bounds of that optima localization interval are tight. The problem of finding of
the critical bound for wide sets of instances (i.e. optima localization problem) is of both
theoretical and practical importance.

Let IGα2, α ∈ {◦, Q,R} stands for the set of all non-trivial instances of the two-
machine routing open shop on graph G with α corresponding to identical, uniform and
unrelated travel times. Then we have the following results:
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Theorem 1 ([2, 5]) For any G ∈ {K2,K3, star} the critical bound ρ∗
(
IG2
)

=
6

5
. For

any I ∈ IG2 a feasible schedule of makespan not exceeding 6
5R̄2(I) can be found in time

O(n).

Theorem 2 For any G ∈ {K2,K3, star} the critical bounds ρ∗
(
IGQ2

)
= ρ∗

(
IGR2

)
=

5

4
.

For any I ∈ IGQ2∪IGR2 a feasible schedule of makespan not exceeding 5
4R̄2(I) can be found

in time O(n).

Note that the general critical bound for G = KN is still unknown both for identical
and individual travel times. It follows from [4] that

ρ∗
(
IKN
2

)
6 4

3
,

although there is yet no evidence known that the critical bound for RO2||Rmax may

exceed
6

5
. Therefore we propose the following

Conjecture 3 ρ∗
(
IKN
2

)
=

6

5
.
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Exact Algorithms for the

Equitable Traveling Salesman Problem

Joris Kinable ∗ Bart Smeulders † Eline Delcour ‡

Frits C.R. Spieksma (Speaker) §

1 Introduction

We consider the following variation of the Traveling Salesman Problem (TSP). Given
is an edge-weighted graph G = (V,E), with |V | even, and with edge-costs de for each
e ∈ E. The cost of a matching in G is defined as the sum of edge-costs of the edges in
the matching. The problem is to find two perfect matchings in G such that (i) the two
matchings form a Hamiltonian cycle in G, and (ii) the absolute difference of the costs
of these two matchings is minimum. Notice that a feasible solution need not exist. We
call this problem the Equitable Traveling Salesman Problem, or ETSP for short.

This name is motivated by the following, more frivolous, description of our problem:
two friends, in possession of a single bike, have agreed to jointly visit all given cities, i.e.,
to construct a tour. In addition, they have agreed to use the bike as follows: one friend
rides (pedals) the bike, while the other sits on the bike’s back. Directly after having
visited a city, the two friends interchange roles. The objective in this problem is to find
a tour such that the difference between the distances pedalled by each of the two friends,
is minimum.

We present the following results. First, the problem is shown to be NP-Hard, even
when the graph G is complete. Second, we give two integer programming models for-
mulating the ETSP (see Section 2), and we compare the strength of these formulations.
Third, we perform computational experiments, solving one model through branch-and-
cut, whereas the other model is solved through a branch-and-price framework. A simple
local search heuristic is also implemented. We conduct these computational experiments
on different types of instances, often derived from the TSPLib. It turns out that the
behavior of the different approaches varies with the type of instances. We refer to Kin-
able et al. [2] for precise statements, their proofs, and a discussion of the computational
experiments.
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2 Formulations for the ETSP

We give two integer programming formulations of the ETSP. In fact, we treat a slightly
more general problem where the edge-sets, and the edge-costs, need not be the same for
the two matchings. We use EB and ER to denote the two edge-sets; EB refers to the
‘blue’ edges that can be used for one matching, while ER refers to the ‘red’ edges to be
used for the other matching. More precisely, we are given a graph G = (V,EB ∪ ER),
and, let MB (MR) refer to the set of perfect matchings in (V,EB) ((V,ER)). Each
edge e in EB (ER) has a cost dbe (dre). The cost of a matching M ∈ MB is defined as
cb(M) =

∑
e∈M dbe. Analogously, the cost of a matching M ∈ MR is cr(M) =

∑
e∈M dre.

Notice that this problem definition does not require that EB ∩ ER = ∅. Furthermore, a
single edge e ∈ EB ∩ER may have different weights in the red or the blue matching (i.e.,
dbe = dre does not necessarily hold). Finally, we define δ(S), S ⊆ V as the set of edges
having exactly one endpoint in S.

2.1 Formulation FBB

The first formulation uses two binary variables for each edge e ∈ EB:

xbe (xre) :=

{
1 if edge e is selected in the blue (red) matching,
0 otherwise,

FBB : min |∑e∈EB
dbex

b
e −

∑
e∈ER

drex
r
e|

s.t.
∑
e∈δ(v)∩EB

xbe = 1 ∀v ∈ V
∑
e∈δ(v)∩ER

xre = 1 ∀v ∈ V
xbe + xre ≤ 1 ∀e ∈ EB ∩ ER∑

e∈δ(S)∩EB
xbe +

∑
e∈δ(S)∩ER

xre ≥ 2 ∀S ⊂ V, |S| ≥ 3

xbe ∈ {0, 1} ∀e ∈ EB
xre ∈ {0, 1} ∀e ∈ ER

2.2 Formulation FBP

Our second formulation has a variable for each perfect matching in the graph. More
precisely, we define a binary variable for each perfect matching M ∈ MB in (V,EB)
(M ∈MR in (V,ER)):

zbM (zrM ) :=

{
1 if perfect matching M is selected as the blue (red) matching,
0 otherwise,

FBP : min|∑M∈MB
cb(M)zbM −

∑
M∈MR

cr(M)zrM |
s.t.

∑
M∈MB

zbM = 1
∑
M∈MR

zrM = 1
∑
M∈MB : e∈M zbM +

∑
M∈MR: e∈M zrM ≤ 1 ∀e ∈ EB ∩ ER

∑
e∈δ(S)(

∑
M∈MB :e∈M zbM +

∑
M∈MR:e∈M zrM ) ≥ 2 ∀S ⊂ V, |S| ≥ 3

zbM ∈ {0, 1} ∀M ∈MB

zrM ∈ {0, 1} ∀M ∈MR
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2.3 Comparing formulations FBB and FBP

Strictly speaking, the formulations given above are not linear due to the absolute value
present in the objective function; a standard trick exists to make these formulations
linear. We are interested in comparing the linear relaxations of formulations FBB and
FBP. Given an instance I of ETSP, let vBB(I) (vBP (I)) denote the value of the linear
relaxation of FBB (FBP) when applied to instance I. Following standard terminology
(see Vielma [1] and references contained therein), we say that the linear relaxation of FBP
is stronger than the relaxation of FBB when the two following conditions are fulfilled:

C1: for each instance I of ETSP, vBP (I) ≥ vBB(I),

C2: there exists an instance I of ETSP for which vBP (I) > vBB(I).

Theorem 1 The linear relaxation of FBP is stronger than the linear relaxation of FBB.
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Polyhedral Results and Valid Inequalities for the

Continuous Energy-Constrained Scheduling Problem

Margaux Nattaf (Speaker)∗ Tamás Kis† Christian Artigues∗

Pierre Lopez∗

1 Introduction

This works deals with event-based mixed integer linear programming formulations for
resource-constrained scheduling problems. In this context, two strongly NP-hard prob-
lems are considered: the Resource-Constrained Project Scheduling Problem (RCPSP)
and the Continuous Energy-Constrained Scheduling Problem (CECSP). Several mixed
integer programs have been developed so far in order to solve them [1, 2, 4].

For the RCPSP, time-indexed formulations have a much better LP relaxation than
the event-based ones. However, time-indexed formulations show their weakness for in-
stances with large planning horizons and heterogeneous task durations, while event-
based models proved to be more efficient to provide exact solutions for these types of
instances [1]. For the CECSP, event-based formulations are the only ones that can
provide optimal solutions. Indeed, an instance of the CECSP may have only solutions
containing non-integer values and such a solution can not be reached by a time-indexed
formulation [2]. In this work, we are interested in the strengthening of those event-based
models. The results presented here are detailed in [3].

2 Problems description

In the CECSP, the goal is to schedule a set of tasks A = {1, . . . , n} using a continu-
ous resource of limited capacity B. At each time t during its processing, a task uses
an amount of the resource bi(t), which has to lie between a minimal and a maximal
requirement, bmin

i and bmax
i , respectively. In addition, a task has to be executed during

its time window [ri, di]. The particularity of the CECSP is that a task no longer has
a fixed duration but instead an energy requirement Wi needs to be fulfilled before the
task deadline. This energy is computed from the task resource usage, using an efficiency
function fi. We assume these functions to be continuous, non-decreasing and linear.
The objective is to minimize the total resource consumption.

The RCPSP deals with a set of resources R and each task consumes a part of one or
several of these resources. Each resource k ∈ R has a limited capacity Bk. Unlike the
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CECSP, tasks have a fixed duration pi and a fixed resource consumption bik (possibly
zero). Furthermore, precedence relationships exist between tasks and a valid schedule
has to satisfy those relationships while minimizing the project total duration.

3 Event-based models

Unlike time-indexed models, event-based models focus on the prevailing dates of the
schedule, also called events. Then, an event can correspond for example to a task start
or end time. These events are represented by a set of continuous variables te and E
represents the index set of these events.

There exist two types of event-based models. The first one is called the start/end
(SE) model and the second one is called the on/off (OO) model [1, 2]. In the SE model,
a set of binary variables xie (resp. yie) is used to represent the fact that task i starts
(resp. ends) at te. In the OO formulation, only one set of binary variables zie is used
and is equal to 1 iff task i is in process between te and te+1.

Note that SE formulations have better relaxations than OO ones [4]. In the following,
we present several sets of inequalities that can be added to the OO models in order to
strengthen them. Note that these inequalities can also directly be rewritten for SE
models as zie can be written as a linear function of xie and yie.

4 Valid inequalities for event-based models

Non-preemptive inequalities The first set of inequalities is called non-preemptive
inequalities. This set can be used to provide a minimal description of the polytope of
all feasible assignments to the on/off binary variables for a single activity.

∑

ek∈S
(−1)kzi,ek ≤ 1 (1)

where S = {e0, e1, . . . , e2`} is a subset of E \ {2n} of odd cardinality such that ek < ek+1

for k = 0, . . . , 2`− 1.

Note that in [4], inequalities (2.13) are a special case of our non-preemptive cuts,
defined over three events only. The inequalities we propose can be partially derived from
the polyhedral results in [5]. We present an alternative proof that these inequalities are
facet defining tailored to our particular case and we also propose an original polynomial
time separation algorithm.

Maximal distance between events The goal of this set of inequalities is to give
an upper bound on the distance between two consecutive events. To define these in-
equalities, we consider the intervals of possible start/end times of tasks. Since an event
must occur in each of these intervals, we can deduce bounds on the distance between
consecutive intervals.

The same kind of reasoning can also be applied to find upper bounds on the date of
a single event te.
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Knapsack inequalities For the CECSP, since the minimum intensity of the activities
can be positive, we can consider the following knapsack-type constraint for each e ∈
E \ {2n} from which one can easily derive valid inequalities:

∑

i∈A
bmin
i zie ≤ B (2)

For the RCPSP, these inequalities correspond to the constraints limiting resources usage.

5 Experiments

The experiments are conducted on an Intel Core i7-4770 processor with 4 cores and
8 gigabytes of RAM under the 64-bit Ubuntu 12.04 operating system. We use IBM
CPLEX 12.6 with one thread and a time limit of 1000 seconds for solving the MILP
models. The benchmark instances we use to perform these experiments are those of [2]
for the CECSP and of [1] for the RCPSP.

For the CECSP, the sets of inequalities allow us to solve more instances. They
also help us to obtain solutions (first and final) of better quality and/or more quickly,
especially when the number of tasks grows. However, these inequalities have little impact
on the root gap.

For the RCPSP, the addition of the inequalities have less impact than for the CECSP.
However, they still improve the time spent to solve the instances and to find first solutions
of better quality but this improvement is not as significant as for the CECSP.

6 Conclusion and Further research

There are numerous directions for further research. In particular, a challenge should be
to find symmetry breaking inequalities. Indeed, one weakness of event-based models is
the considerable number of symmetries they contain. Besides, a minimal description of
the polyhedra of all asymmetric feasible assignments of the on/off variables not for a
single activity but for all of them can also be an interesting track.
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Efficient Frameworks for Utilization-Based Analysis for

Fixed-Priority Scheduling in Real-Time Systems∗

Jian-Jia Chen (Speaker) † Wen-Hung Huang ‡ Cong Liu §

1 Introduction

To analyze the worst-case response time or to ensure the timeliness of the system, for
each of individual task models, researchers tend to develop dedicated techniques that
result in schedulability tests with different computation complexity and accuracy of the
analysis. Although many successful results have been developed, after many real-time
systems researchers devoted themselves for many years, there does not exist a general
framework that can provide efficient and effective analysis for different task models.

A very widely adopted case is the schedulability test of a (constrained-deadline)
sporadic real-time task τk under fixed-priority scheduling in uniprocessor systems, in
which the time-demand analysis (TDA) developed in [5] can be adopted. That is, if

∃t with 0 < t ≤ Dk and Ck +
∑

τi∈hp(τk)

⌈
t

Ti

⌉
Ci ≤ t, (1)

then task τk is schedulable under the fixed-priority scheduling algorithm, where hp(τk)
is the set of tasks with higher priority than τk, Dk, Ck, and Ti represent τk’s relative
deadline, worst-case execution time, and period, respectively. TDA requires pseudo-
polynomial-time complexity to check the time points that lie in (0, Dk].

However, it is not always necessary to test all possible time points to derive a safe
worst-case response time or to provide sufficient schedulability tests. The general and
key concept to obtain sufficient schedulability tests in k2U in [2, 3] and k2Q in [1, 4] is to
test only a subset of such points for verifying the schedulability. Traditional fixed-priority
schedulability tests often have pseudo-polynomial-time (or even higher) complexity. The
idea implemented in the k2U and k2Q frameworks is to provide a general k-point
schedulability test, which only needs to test k points under any fixed-priority scheduling
when checking schedulability of the task with the kth highest priority in the system.
Moreover, this concept is further extended in k2Q to provide a safe upper bound of the
worst-case response time. The response time analysis and the schedulability analysis
provided by the frameworks can be viewed as “blackbox” interfaces that can result in
sufficient utilization-based analysis, in which the utilization of a task is its execution
time divided by its period.
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†jian-jia.chen@cs.uni-dortmund.de Department of Informatics, TU Dortmund, Germany
‡wen-hung.huang@cs.uni-dortmund.de Department of Informatics, TU Dortmund, Germany
§cong@utdallas.edu Department of Computer Science, University of Texas at Dallas, USA

221



In k2U, all the testings and formulations are based on the task utilizations. In k2Q,
the testings are based not only on the task utilizations, but also on the task execution
times. The different formulations of testings result in different types of solutions. The
natural form of k2U is a hyperbolic form for testing the schedulability of a task, whereas
the natural form of k2Q is a quadratic form.

2 k2U and k2Q Frameworks

We first present the definitions and properties of the k2U and k2Q frameworks for
testing the schedulability of task τk in a given set of real-time tasks. We implicitly
assume that there are k − 1 higher-priority tasks when we consider task τk.

Definition 1. A k-point effective schedulability test is a sufficient schedulability test of
a fixed-priority scheduling policy, that verifies the existence of tj ∈ {t1, t2, . . . tk} with
0 < t1 ≤ t2 ≤ · · · ≤ tk such that

Ck +
k−1∑

i=1

αitiUi +

j−1∑

i=1

βitiUi ≤ tj , (2)

where Ck > 0, αi > 0, Ui > 0, and βi > 0 are dependent upon the setting of the task
models and task τi.

Definition 2 (Last Release Time Ordering). Let π be the last release time ordering
assignment as a bijective function π : hp(τk)→ {1, 2, . . . , k − 1} to define the last release
time ordering of task τj ∈ hp(τk) in the window of interest. Last release time orderings
are numbered from 1 to k − 1, i.e., |hp(τk)|, where 1 is the earliest and k − 1 the latest.

Definition 3. A k-point last-release schedulability test under a given ordering π of the
k− 1 higher priority tasks is a sufficient schedulability test of a fixed-priority scheduling
policy, that verifies the existence of 0 ≤ t1 ≤ t2 ≤ · · · ≤ tk−1 ≤ tk such that

Ck +
k−1∑

i=1

αitiUi +

j−1∑

i=1

βiCi ≤ tj , (3)

where Ck > 0, for i = 1, 2, . . . , k − 1, αi > 0, Ui > 0, Ci ≥ 0, and βi > 0 are dependent
upon the setting of the task models and task τi.

2.1 Key Properties of k2U

By using the property defined in Definition 1, we can have the following lemmas in the
k2U framework [2, 3]. All the proofs of the following lemmas are in [2, 3].

Lemma 4. For a given k-point effective schedulability test of a scheduling algorithm,
defined in Definition 1, in which 0 < tk and 0 < αi ≤ α, and 0 < βi ≤ β for any
i = 1, 2, . . . , k − 1, task τk is schedulable by the scheduling algorithm if the following
condition holds

Ck
tk
≤

α
β + 1

∏k−1
j=1(βUj + 1)

− α

β
. (4)
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Lemma 5. For a given k-point effective schedulability test of a scheduling algorithm,
defined in Definition 1, in which 0 < tk and 0 < αi ≤ α and 0 < βi ≤ β for any
i = 1, 2, . . . , k − 1, task τk is schedulable by the scheduling algorithm if

Ck
tk

+
k−1∑

i=1

Ui ≤
(k − 1)((α+ β)

1
k − 1) + ((α+ β)

1
k − α)

β
. (5)

2.2 Key Properties of k2Q

By using the property defined in Definition 3, we can have the following lemmas in the
k2Q framework [1, 4]. All the proofs of the following lemmas are in [1, 4].

Lemma 6. For a given k-point last-release schedulability test, defined in Definition 3,
of a scheduling algorithm, in which 0 < αi, and 0 < βi for any i = 1, 2, . . . , k − 1,
0 < tk,

∑k−1
i=1 αiUi ≤ 1, and

∑k−1
i=1 βiCi ≤ tk, task τk is schedulable by the fixed-priority

scheduling algorithm if the following condition holds

Ck
tk
≤ 1−

k−1∑

i=1

αiUi −
∑k−1

i=1 (βiCi − αiUi(
∑k−1

`=i β`C`))

tk
. (6)

It may seem at first glance that we need to test all the possible orderings. Fortunately,
with the following lemma, we can safely consider only one specific ordering of the k − 1
higher priority tasks.

Lemma 7. The worst-case ordering π of the k−1 higher-priority tasks under the schedu-
lability condition in Eq. (6) in Lemma 6 is to order the tasks in a non-increasing order
of βiCi

αiUi
, in which 0 < αi and 0 < βi for any i = 1, 2, . . . , k − 1, and 0 < tk.

3 Applications

The k2U and k2Q frameworks can be used by a wide range of applications from unipro-
cessor systems to multiprocessor systems and from the simplest sporadic real-time task
model to very expressive real-time task models. The frameworks can be applied as long
as the users can properly specify the corresponding task properties Ci (in case of k2Q)
and Ui and the constant coefficients αi and βi of every higher priority task τi. The choice
of the parameters αi and βi affects the quality of the resulting schedulability bounds.
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Make-to-Order Integrated Scheduling and Distribution∗

Yossi Azar† Amir Epstein‡  Lukasz Jeż§(Speaker) Adi Vardi¶

Production and distribution are fundamental operational functions in supply chains.
Some large retailers sell vast amount of different products while an increasing number
of companies adopt make-to-order business models in which products are custom-made
and quickly delivered to the customers directly from the factory. In either case, there
is little to no product inventory. Scheduling productions and distribution jointly allows
optimizing operational performance by leveraging the tradeoff between various costs,
total revenue, and time between order placement and its delivery, thus reducing inven-
tory levels and increasing responsiveness to customers. Most integrated production and
distribution scheduling models consider the offline setting with full information about
future orders but such assumption is non-realistic for the make-to-order business models.

Therefore, we study scheduling orders and their subsequent distribution to customers
online, as they arrive over time. In our model, n customers are to be served by a
manufacturer’s m identical machines. Each customer i releases jobs (orders) over time,
each with a specified processing time pij . The manufacturer must process all jobs,
allowing preemption, and deliver finished jobs (products) to respective customers. A
completed job has to be delivered to the customer but not necessarily immediately. Each
customer i has a non-negative delivery cost Di that does not depend on the number of
jobs delivered in the same delivery (batch). Furthermore, deliveries to different customers
cannot be combined. The goal is to minimize the total cost, which is the sum of the
total lead time, i.e., time from a job’s release till its delivery, and the total delivery
cost. To this end, the manufacturer may postpone the delivery of completed jobs and
aggregate them in batches. We let the minimum and maximum job processing time by
pmin = mini,j pij , pmax = maxi,j pij , and similarly, Dmin = miniDi, Dmax = maxiDi.
Finally, we let ρ = pmax

pmin
and ∆ = Dmax

Dmin
.

Interestingly, this generalizes two fundamental problems in computer science that
received much attention. When all delivery costs are zero, the problem reduces to
minimizing the total flow time on parallel identical machines, see [3, 6]. On the other
hand, when all jobs have zero processing time, it reduces to independent instances of
the TCP Acknowledgment problem [4, 5], one per customer.

Our and Previous Results

We provide an O(logm + log ∆ + log ρ)-competitive algorithm for the integrated pro-
duction and distribution scheduling problem, which improves exponentially on (both)
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previous upper bound guarantees even for a single machine: of the two, one was ρ+3 [1]
and the other 2

∑
iDi/miniDi [2], which is Ω(n+ ∆).

Moreover, we prove a lower bound of Ω( log ∆
log log ∆), which holds for any number of ma-

chines, thus refuting the conjecture of Averbakh et al. [1] that an O(1)-competitive algo-
rithm for a single machine exists. As additional lower bounds of Ω(log ρ) and Ω(logm)
follow from the problem of flow time minimization on identical machines [6], together
these imply that our algorithm is essentially optimal.

Upper Bound Overview

Any algorithm for our model must have two components: job scheduling (i.e., which jobs
to process at each point of time) and delivery scheduling (i.e., when to deliver jobs to the
customer), which cannot be decoupled: On the one hand, we prefer to process jobs with
small processing time in order to reduce the flow time (time between the job’s release
and completion time), on the other hand, we prefer to process jobs from the same client,
especially if their delivery cost is relatively large, in order to deliver them together in a
single batch. Hence, the challenge is to balance between the flow time, lag time (defined
as the time between a job being completed and delivered) and delivery cost.

For a single machine and a single customer, the following elegant lgorithm, abbrevi-
ated as SRPTD, is 2-competitive[2]: The jobs are scheduled according to SRPT (shortest
remaining processing time); each time the total lag time of completed undelivered jobs
equals the delivery cost, these jobs are delivered to the customer.

Using SRPTD for multiple customers (even for a single machine) seems to yield
linear competitive ratio [2]. Hence, we develop a different algorithm, which nevertheless
uses SRPTD to create batches of jobs for each customer. For job scheduling though,
our algorithm uses the non-migratory scheduling algorithm presented in [3], which is
known to achieve optimal competitive ratio for flow time minimization. This algorithm
partitions the jobs into classes according to job size. It does not specify how to choose
between jobs of the same class. As we aim to decrease the number of interleaved batches,
our specific realization of the algorithm activates a single batch from each class on a
machine, and processes only the jobs from active batches.

We note that when the processing schedule is given, the deliveries can be taken
care of in a nearly optimal way. Specifically, one can easily observe that delivering all
completed undelivered jobs of each customer once they accumulate a lag time equal
to the delivery cost of that customer yields a 2-competitive delivery schedule (TCP
Acknowledgment [4, 5]). However, it is difficult to analyze the combined algorithm
(scheduling and delivery), since the job schedule produced by our algorithm may be far
from optimal. Therefore, we analyze a “virtual” delivery procedure described below.

The main challenge of delivery scheduling is handling interleaved batches. Although
in SRPTD simulation each batch accumulates a lag time equal to customer’s delivery
cost, the actual accumulated lag time of jobs in the batch as processed by our algorithm
may be large due to interleaving with batches of other customers; note that a batch is not
completed if preempted by other batches. Our algorithm handles this issue as follows:
While the number of undelivered jobs in a batch is large, each time that the number
of active jobs (released but not yet completed) is close to the number of completed
undelivered jobs, the latter are delivered to the customer — this way their lag time be
charged to the flow time of the former jobs. Moreover, the number of deliveries per
batch is poly-logarithmic in m, ρ, and ∆.
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When the number of active jobs in a batch drops below a certain threshold, the
delivery pattern changes. Namely, we partition the batch into sub-batches consisting
of jobs of the same size class. Then, there is only a single delivery per sub-batch, once
all of its jobs are completed. We charge the lag time of these jobs to the flow time
and delivery cost of other batches using an exponential charging scheme. We believe
that this charging scheme can be used in related problems. Specifically, we charge each
completed undelivered job to the flow time and delivery cost of all jobs from lower classes
(since a job can be preempted only by a job from a lower class). A job from a certain
class is charged with an appropriate weight, exponentially decreasing with the difference
between the classes of the completed undelivered job and the preempting jobs.

Lower Bound Overview

Our lower bound is based on the following idea. There are only two customers, one with
unit delivery cost and unit processing time jobs, and one with large delivery cost and jobs
with large processing time. The lower bound consists of up to a logarithmic number of
phases. The number of released unit processing time jobs increase exponentially with the
phase, while the number of remaining large jobs decreases exponentially with the phase.
If there ever is a moment such that, due to prioritizing the large jobs, the online algorithm
has significantly more jobs than an algorithm that prioritizes small jobs, than the ratio
between the number of their jobs can translated into a lower bound on the competitive
ratio, as the former can be maintained by issuing a unit processing time job at every
time unit for a substantial amount of time. Naturally, this results in the same ratio
between the flow times of the algorithms, and in such case the overall cost is dominated
by the flow time. Thus, a competitive online algorithm is forced to prioritize small jobs.
As these arrive over time in successive phases, such algorithm starts processing the large
jobs in each phase only to switch to the small jobs in the successive one. As the delivery
cost for large jobs is large, the net result is that the algorithm accumulates large cost
(lead time + delivery cost) for these jobs, which again dominates the overall cost.
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1 Introduction

A well studied class of problems is scheduling a set of n nonpreemptive jobs that arrive
over time on m unrelated machines with the objective of minimizing the total weighted
completion time. Here, unrelated machines refers to the fact that the matrix that de-
scribes the processing times of all jobs on all machines can have rank larger than 1. The
offline version of that problem is denoted R | rj |

∑
wjCj in the three-field notation of

Graham et al. [3], and it has always been a cornerstone problem for the development of
new techniques in the design of (approximation) algorithms.

We here address the online version of that problem with stochastic jobs. Specifically,
we are interested in online scheduling of non-preemptive, stochastic jobs in an unrelated
machine environment to minimize the total weighted completion time. That means that
this paper addresses the same problem as [5], however not for identical machines, but
for the most general, unrelated machines model. In the stochastic unrelated machine
setting, the scheduler is given a probability distribution of a job’s processing time which
is machine-dependent, and there need not be any correlation between the jobs’ processing
time distributions on different machines.

A priori, it is not clear that there should exist an algorithm with small competitive
ratio. Prior work for the offline problem with stochastic jobs requires sophisticated
linear [6] or convex [2] programming relaxations. Good candidates for online algorithms,
however, should be simple and combinatorial. Even discovering an offline algorithm that
is combinatorial remains a target.

We settle this question. For the case without nontrivial release dates we show:

Theorem 1 There is a (8 + 4∆)-competitive greedy algorithm for online scheduling of
stochastic jobs to minimize the expected total weighted completion times E[

∑
j wjCj ].

Here, ∆ is an upper bound on the squared coefficients of variation of the procesing
time distributions. For the case with nontrivial release dates rj we show:

Theorem 2 There is a (144 + 72∆)-competitive greedy algorithm for online scheduling
of stochastic jobs to minimize the expected total weighted completion times E[

∑
j wjCj ].
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2 Greedy Algorithm and Sketch of Proof

The algorithm we analyze is the most natural greedy algorithm one might imagine; it is
the same as in [5], only for unrelated machines.
Greedy: Whenever a new job j is presented to the algorithm, compute for each of
the machines i the instantaneous expected increase if the jobs already present on each
machine where to be scheduled in non-increasing order of the ratios weight over expected
processing time. Assign the job to one of the machines where this quantity is minimal.
Once all jobs have arrived and are assigned, they will be sequenced in non-increasing
order of ratios weight over expected processing time, which is known to be optimal
conditioned on the given assignment. For the case with nontrivial release dates rj ,
the algorithm is more complicated and inserts additional idle time; for details see the
full version of this extended abstract [4]. The analysis, inspired by the “dual fitting”
argument as suggested in [1], goes essentially in three steps:

1. set up an extended version of the LP-relaxation in [6, §8], with variables yijt
denoting the probability for a job j to be in process on machine i at time t,

2. “de-stochastify” this LP-relaxation, this simplifies the LP, but yields a lost of
O( ∆ ) in optimal LP solution value,

3. construct a solution to the LP dual of the simplified LP, that allows analyzing
Greedy, showing it’s performance is within a factor O( 1 ) of the simplified LP.
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How to Allocate Prices to Random Customers?
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1 Introduction

Posted price mechanisms constitute an attractive and widely applicable way of selling
items to strategic consumers. In this context, a seller schedules take-it-or-leave-it offers
to costumers, and therefore strategic behavior simply vanishes. This type of mechanism
has been vastly studied, particularly in the marketing community. In recent years,
there has been a significant effort to understand the expected revenue of the outcome
generated by different posted price mechanisms when compared to that of the optimal
auction [1, 2].

In its simplest form, the problem we consider can be described as follows. A monop-
olist is allocating a single item to one buyer from a set of known potential buyers. The
seller places no value on the item, while the buyers have independent, not necessarily
identical, random valuations for the item. The main question is to design a mechanism
maximizing the revenue of the seller. This question was answered in a seminal paper
by Myerson [5], and the solution is, in some situations, a remarkably simple mechanism.
However, in many situations the mechanism is hard to implement, and the mechanism
of choice turns out to be a simple posted price mechanism. A common example of this
practice is so called direct mail campaigns, in which the seller contacts its potential buy-
ers directly and offers each one a certain price for the item. The item is then sold to the
first consumer who accepts the offer.

In this paper, we investigate the performance of posted price mechanisms to sell
a single item to a given set of customers who arrive in a random unknown order. We
consider two different models which share the property that each customer will be offered
the item at most once. Upon receiving an offer, a customer immediately decides whether
to buy the item at that price, in which case we allocate the item to her, or to pass and
simply not buy, in which case she leaves the system. The nonadaptive model considers
the situation in which all offers have to be scheduled beforehand, and customers respond

∗correa@uchile.cl. Departamento de Ingenieria Industrial, Universidad de Chile, Republica 701,
Santiago, Chile.
†patricio.foncea@ug.uchile.cl. Departamento de Ingenieria Industrial, Universidad de Chile, Re-

publica 701, Santiago, Chile.
‡rhoeksma@dim.uchile.cl. Center for Mathematical Modeling, Universidad de Chile, Beauchef 851,

Santiago, Chile.
§t.oosterwijk@maastrichtuniversity.nl. School of Business and Economics, Maastricht Univer-

sity, Tongersestraat 53, Maastricht, The Netherlands.
¶t.vredeveld@maastrichtuniversity.nl. School of Business and Economics, Maastricht University,

Tongersestraat 53, Maastricht, The Netherlands.

229



in random order, akin to direct mail campaigns. The adaptive model considers a situation
in which the seller may adapt the offer. Here, customers again arrive in random order.
Whenever a customer arrives, she is offered the item at a price, which the seller may
base on the customer he is offering to, as well as the customers who already rejected
earlier offers. He allocates the item to her for the offered price if she accepts.

2 Problem description

A seller has a single item to allocate to one customer from a given set of customers I. We
assume that the seller has no value for keeping the item. Customers have independent
random valuations for the item with customer i ∈ I valuing the item at vi, drawn from
distribution Fi(·). The customers arrive in (uniform) random order, and the goal of the
seller is to maximize his expected revenue. We consider two scenarios.
Nonadaptive: The seller plans prices pi ≥ 0 for all i ∈ I beforehand, with the goal of
maximizing his expected revenue, defined as

∑

i∈I
piPσ,v [i = argminj∈I{σ(j) | vj ≥ pj}] ,

where the probability is taken over the arrival permutation σ and the customers’ valua-
tions v.
Adaptive: The seller offers each customer a price as she arrives. So, the seller sets
functions pi : 2I → R for each customer i, such that, if S is the set of customers who
already arrived and declined the offer, pi(S) is the price offered to customer i if she is next
to arrive. For an arrival permutation σ, we denote pi(σ) = pi({σ−1(1), . . . , σ−1(σ(i) −
1)}), and therefore we can write the seller’s expected revenue as

Eσ

[∑

i∈I
pi(σ)Pv [i = argminj∈I{σ(j) | vj ≥ pj(σ)]

]
,

where the expectation is taken over the arrival permutation σ, and the probability is
taken over the customers’ valuations v.

3 Our results

As our main result, we prove the existence of a nonadaptive posted price mechanism that
guarantees an expected revenue within a factor 1 − 1/e of that of Myerson’s optimal
auction. On the one hand, this bound matches the well known result of Chawla et
al. [2], who designed a sequential posted price mechanism with the same approximation
guarantee. Although their mechanism is also nonadaptive in the sense that the selected
prices are planned a priori, it has the power to choose the arrival order of the customers.
Thus, making it easier to extract revenue by offering to good customers first. On the other
hand, this bound also matches the approximation guarantee obtained by Esfandiari et
al. [4], who also consider the random arrival model, but in their mechanism the sequence
of prices depends on the arrival order of customers, and it is therefore adaptive (according
to the definition in this paper). Besides the natural application of our nonadaptive
setting, it is therefore interesting to note that one can achieve this approximation factor
in the random arrival model without using adaptivity. Also, as opposed to previous
results, we prove that the bound of 1− 1/e is best possible for our setting.
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Theorem 1 For any given set of potential customers I, there exists a nonadaptive
posted price mechanism that achieves an expected revenue of at least a 1− 1/e fraction
of that of Myerson’s auction on I.

To prove the theorem, we prove a basic lemma about Bernoulli random variables.
We consider a continuous relaxation of the maximization problem used to determine the
approximation guarantee. Then we guess a solution in which we offer to each accepting
customer with some instance-dependent probability. We proceed to look for the worst
possible instance by applying the first order optimality conditions of a nonlinear problem.
These conditions reveal some structural insight on what a worst case instance looks like.
Using this, we are finally able to obtain the desired bound. Theorem 1 follows from the
basic lemma with fairly little extra work. The basic tool for this is a fundamental result
by Chawla et al. [2, Lemma 4] that upper bounds the revenue of the optimal auction.
We also show that the lemma generalizes to arbitrary random variables. This implies a
variant of the prophet inequality that was recently developed by Esfandiari et al. [4].

To complement our results, we provide instances that show that the bound in Theo-
rem 1 is tight. In particular, we show that even with independent identically distributed
(i.i.d.) customer valuations the bound of Theorem 1 cannot be beaten. Therefore adap-
tivity is necessary to go beyond 1 − 1/e even with i.i.d. distributions. For this setting
we show the following result.

Theorem 2 For any given set of potential customers I whose values are independent
and identically distributed, there exists an adaptive posted price mechanism that achieves
an expected revenue of at least a 0.745 fraction of that of Myerson’s auction on I.

We do not think this last result is tight. The best upper bound known for the i.i.d. case
is due to Blumrosen et al. [1], who prove that no algorithm can achieve a fraction of at
least 0.79. We remark here that recent work of Duetting et al. [3] also studies the benefit
of adaptivity in the i.i.d. case, but from a different perspective.
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1 Introduction

A fundamental combinatorial optimization problem that has received considerable at-
tention in the past is packet routing in graphs (cf. [7, 9, 10, 11, 12]). We are given a set
of packets, which may, for example, correspond to unit-sized messages/bits in a commu-
nication network. Originated at possibly different start nodes, the goal is to transfer all
packets as fast as possible to their respective destination nodes. It is assumed that each
edge is equipped with a capacity (or bandwidth) and a travel time. A prominent variant
is discrete store-and-forward packet routing, where every node can store arbitrarily many
packets, but only a limited number can enter an edge simultaneously at each discrete
time step, see [9]. Applications can be found in routing models used in synchronized
systems with a given clock-rate. Imagine, for example, a chip with components and
wires corresponding to the nodes and edges, respectively, of the associated graph, and
with a centralized clock rate for the chip given by a crystal oscillator.

In this work, we focus on selfish or competitive packet routing using the discrete
store-and-forward packet routing model. We are given a multi- or single-commodity
network, where the commodities are specified by a source and a sink node and represent
the players that route rational and selfishly one packet from their source to their sink
through the network. Each edge of the network is endowed with an integral travel time
and an integral capacity. The capacity of the edge defines the number of players that may
enter the edge simultaneously. For each edge, we are given a priority list (i.e., an ordered
list of the players) to resolve conflicts whenever more than capacity many players seek to
enter that edge at the same point in time. All players are ready to start right from the
beginning (i.e., there are no release dates) and aim to minimize their respective arrival
time at the sink. Since the outcome of this competitive situation intrinsically depends
on the priority lists employed on the edges, the problem of finding good priority lists
renders into a coordination mechanism design problem. See [3] for the first landmark
paper and several follow ups [1, 4, 6].
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2 Our Contribution

We explore properties of selfish discrete store-and-forward packet routing with priority
based scheduling policies. We consider local priority lists and global priority lists (that
may or may not depend on the edge). Furthermore we distinguish between a multi-
commodity and a single-commodity network, where the same source and sink pair is
dedicated to every player. We obtain the following results.

Price of Anarchy/Stability. For global priority lists and multi-commodity instances
we show that the price of stability (PoS for short) is upper bounded by n+1

2 and the

price of anarchy (PoA) is upper bounded by 5
6 + n2

6 , where n denotes the number of
players. For global priority lists and symmetric games (that is, all packets travel from
a common source to a common sink) the PoS is one, while the PoA for these games is
exactly n+1

2 and this bound holds even for multiple sources and a single sink.

For general local priority lists (that is, the predefined order may be different among
edges) and multi-commodity games, we derive that the PoA is in between T

4 and 6T 2,
where T is a kind of dilation of the graph, i.e., the maximal length of a path, where
edges with travel time 0 contribute 1 to the path. This result is obtained via adapting
the primal-dual technique introduced by Kulkarni and Mirrokni [8].

Computational Complexity. We turn to the question of computing optimal priority
lists, that is, priority lists that induce best possible social optima or Nash equilibria. It
turns out that computing an optimal local priority list with respect to minimizing a
social optimum in symmetric instances can be done in polynomial time. The question
of computing an optimal local priority list with respect to minimizing the inefficiency
of Nash equilibria for symmetric instances remains open. For multi-commodity graphs,
we show that both problems are APX-hard. Note that this is the first hardness result
for the underlying coordination mechanism design problem and complements several
approximability results for the tree case recently derived by Bhattacharya et al. [2].
Technically, we adapt a construction of Peis et al. [11], where it is shown that the problem
to compute a schedule minimizing the makespan (the latest arrival of any packet) is APX-
hard. Our result implies that the problem of defining global as well as local priority lists
for minimizing the cost of any Nash equilibrium or of any social optimum is APX-hard.

We finally derive several further hardness results for our model: In multi-commodity
games with local priority lists it is NP-hard to compute a pure Nash equilibrium. More-
over, it is NP-hard to compute a best response in symmetric games with local priority
lists. These results are obtained by adapting the reduction described in Hoefer et al. [5]
which is used to prove hardness in a more general setting.

An open question is the complexity of computing a pure Nash equilibrium in a
symmetric game with local priority lists. Attention should be paid to the fact, that
there exist competitive packet routing games with local priority lists which improve the
PoA in contrast to any global priority list. For example there exist a local priority list
such that the PoA of the n-th Braess graph is equal to 1, whereas it is n+1

2 for every
global priority list. For global priority lists, we get an efficient Dijkstra-type algorithm
for computing a best response and, thus, a pure Nash equilibrium.
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Scheduling Maintenance Jobs in Networks

Fidaa Abed ∗ Lin Chen † Yann Disser ‡ Martin Groß§

Nicole Megow ¶ Julie Meißner ‖ Alexander T. Richter ∗∗

Roman Rischke (Speaker) ††

1 Introduction

Transportation and telecommunication networks are important backbones of modern
infrastructure and have been a major focus of research in combinatorial optimization
and other areas. Research on such networks usually concentrates on optimizing their
usage, for example by maximizing throughput or minimizing costs. In the majority of the
studied optimization models, it is assumed that the network is permanently available,
and our choices only consist in deciding which parts of the network to use at each point in
time. Practical transportation and telecommunication networks, however, can generally
not be used non-stop. Be it due to wear-and-tear, repairs, or modernizations of the
network, there are times when parts of the network are unavailable. We study how to
coordinate such maintenance in different parts of the network to ensure connectivity.

While network problems and scheduling problems individually are fairly well under-
stood, the combination of both areas that results from scheduling network maintenance
has only recently received some attention [2, 3, 7, 1, 5] and is theoretically hardly un-
derstood.

2 Problem Definition

We study connectivity problems which are fundamental in this context. In these prob-
lems, we aim to schedule the maintenance of edges in a network in such a way as to pre-
serve connectivity between two designated vertices. Given a network and maintenance
jobs with processing times and feasible time windows, we need to decide on the temporal
allocation of the maintenance jobs. While a maintenance on an edge is performed, the
edge is not available. We distinguish between MinConnect, the problem in which we
minimize the total time in which the network is disconnected, and MaxConnect, the
problem in which we maximize the total time in which it is connected.
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In both of these problems, we are given an undirected graph G = (V,E) with two
distinguished vertices s+, s− ∈ V . We assume w.l.o.g. that G is simple. Every edge e ∈ E
needs to undergo pe ∈ Z≥0 time units of maintenance within the time window [re, de]
with re, de ∈ Z≥0, where re is called the release date and de is called the deadline of the
maintenance job for edge e. An edge e = {u, v} ∈ E that is maintained at time t, is not
available at t in the graph G. We consider preemptive and non-preemptive maintenance
jobs. If a job must be scheduled non-preemptively then, once it is started, it must run
until completion without any interruption. If a job is allowed to be preempted, then its
processing can be interrupted at any time and may resume at any later time.

A schedule S for G assigns the maintenance job of every edge e ∈ E to a single time
interval (if non-preemptive) or a set of disjoint time intervals (if preemptive) S(e) :=
{[a1, b1], . . . , [ak, bk]} with re ≤ ai ≤ bi ≤ de, for i ∈ [k] and

∑
[a,b]∈S(e)(b − a) = pe. We

define T := maxe∈E de as our time horizon. We do not limit the number of simultaneously
maintained edges.

For a given maintenance schedule, we say that the network G is disconnected at
time t if there is no path from s+ to s− in G at time t, otherwise we call the network
G connected at time t. The goal is to find a maintenance schedule for the network G
so that the total time where G is disconnected is minimized (MinConnect). We also
study the maximization variant of the problem, in which we want to find a schedule that
maximizes the total time where G is connected (MaxConnect).

3 Our Contribution

Preemptive Scheduling. For preemptive maintenance jobs, we show the following.

Theorem 1 Both MaxConnect and MinConnect with preemptive jobs can be solved
optimally in polynomial time on arbitrary graphs.

This result crucially requires that we are free to preempt jobs at arbitrary points in
time. Under the restriction that we can preempt jobs only at integral points in time, the
situation changes drastically.

Theorem 2 MaxConnect with preemption only at integral time points is NP -hard
and does not admit a (2 − ε)-approximation algorithm for any ε > 0, unless P = NP .
MinConnect with preemption only at integral time points is inapproximable.

We remark that this is true even for unit-size jobs. This complexity result is interesting
and may be surprising, as it is in contrast to results for standard scheduling problems,
without an underlying network. Here, the restriction to integral preemption typically
does not increase the problem complexity when all other input parameters are integral.

Non-Preemptive Scheduling. For non-preemptive instances, our main result is as
follows.

Theorem 3 Unless P = NP , there is no (c 3
√
|E|)-approximation algorithm for non-

preemptive MaxConnect, for some constant c > 0. MinConnect is inapproximable
even on disjoint paths between the two nodes s+ and s−, unless P = NP .

236



On the positive side, we give an (`+ 1)-approximation algorithm for MaxConnect on
general graphs, where ` := |{de−pe : e ∈ E}| is the number of distinct latest start times.

Power of Preemption. We use the notion power of preemption to capture the benefit
of allowing arbitrary job preemption. The power of preemption is a commonly used
measure for the impact of preemption in scheduling. It is defined as the maximum ratio
of the objective values of an optimal non-preemptive and an optimal preemptive solution.

Theorem 4 The power of preemption is Θ(log |E|) for MinConnect on a path and
unbounded for MaxConnect on a path.

This is in contrast to other scheduling problems, where the power of preemption is
constant, e.g. [4, 8].

Mixed Scheduling. For mixed instances, which have both preemptive and non-
preemptive jobs, we obtain the following.

Theorem 5 MaxConnect and MinConnect with preemptive and non-preemptive
maintenance jobs are weakly NP -hard, even on a path.

This hardness result is of particular interest, as both purely non-preemptive and purely
preemptive instances can be solved efficiently on a path (see Theorem 1 and [6]). Further-
more, we give a simple 2-approximation algorithm for mixed instances of MinConnect.
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New Structural Results for Bin Packing with a Constant

Number of Item Types∗

Klaus Jansen † Kim-Manuel Klein (Speaker) ‡

1 Introduction

We consider the classical bin packing problem with d different item sizes s1, . . . , sd and
build upon the results by Goemans and Rothvoß [1] to obtain a new polynomial time
algorithm for the bin packing problem when d is constant [3]. Therefore, we present new
techniques on how solutions of an instance can be modified and we give a new structure
theorem that relies on the set of vertices of the underlying integer polytope. As a result
of our new structure theorem, we obtain an algorithm for the bin packing problem with
running time |V |2O(d) ·enc(I)O(1), where V is the set of vertices of the underlying integer
knapsack polytope and enc(I) is the encoding length of the bin packing instance. The
algorithm is fixed parameter tractable, parameterized by the number of vertices of the
integer knapsack polytope |V |. This shows that the bin packing problem can be solved
efficiently when the underlying integer knapsack polytope has an easy structure, i.e. has
a small number of vertices. This is for example the case when all item sizes s1, . . . , sd
are of the form si = 1

ai
for some ai ∈ Z≥1 (in that case we obtain a running time of

22
O(d) · enc(I)O(1) and therefore fpt in d).

Furthermore, we show that the presented bounds of the structure theorem are asymp-
totically tight. We give a construction of bin packing instances using new structural
insights and classical number theoretical theorems which yield the desired lower bound.

2 The Structure Theorem

Given the polytope P = {x ∈ Rd | Ax ≤ c} for some matrix A ∈ Zm×d and a vector
c ∈ Zd. We consider the integer cone

int.cone(P ∩ Zd) = {
∑

p∈P∩Zd

λpp | λ ∈ ZP∩Z
d

≥0 }

of integral points inside the polytope P. When we choose P to be the knapsack polytope,
i.e. P = {x ∈ Zd

≥0 | sTx ≤ 1}, then each integral point of the polytope represents one

possibility of packing a single bin with items from s1, . . . , sd. Hence a vector λ ∈ ZP∩Zd

≥0

∗This work was partially supported by DFG Project, Entwicklung und Analyse von effizienten poly-
nomiellen Approximationsschemata für Scheduling- und verwandte Optimierungsprobleme, Ja 612/14-2
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of int.cone(P ∩ Zd) represents a packing of the bin packing problem. A long standing
open question was, if the bin packing problem can be solved in polynomial time when
the number of different item sizes d is constant. This problem was recently solved by
Goemans and Rothvoß [1] using structural properties of the integer cone. Essentially,
they proved the existence of a distinguished set X ⊂ P of bounded size such that for
every vector b ∈ int.cone(P ∩ Zd) there exists an integral vector λ ∈ ZP∩Zd

≥0 where most
of the weight lies in X.

x1

x2

PI

s1 = 3
14

s2 = 2
7

Figure 1: The integer knapsack polyope

In our paper we show that a simi-
lar structure theorem holds for a rather
natural choice of the distinguished set X.
Therefore, we consider the so called inte-
ger polytope PI . It is defined by the con-
vex hull of all integer points inside P (see
figure 1) i.e. PI = Conv(P ∩ Zd). Let VI
be the vertices of the integer polytope PI
i.e. PI = Conv(VI). Based on the set VI ,
we showed the following structure theorem
for solutions λ of int.cone(P ∩ Zd):

Theorem 1 Let P = {x ∈ Rd | Ax ≤ c}
be a polytope with A ∈ Zm×d, c ∈ Zd

≥0 and
let supp(λ) be the set of non-zero components of λ. Then for any vector b ∈ int.cone(P∩
Zd), there exists an integral vector λ ∈ ZP∩Zd

≥0 such that b =
∑

p∈P∩Zd λpp and

1. λp ≤ 22
O(d) ∀p ∈ (P ∩ Zd) \ VI

2. |supp(λ) ∩ VI | ≤ d · 2d

3. |supp(λ) \ VI | ≤ 22d

As a consequence of our structure theorem, we obtain an algorithm for the bin packing
problem with a running time of |VI |2

O(d) · log(∆)O(1), where ∆ is the maximum over
all multiplicities b and denominators in s. Since |VI | ≥ d + 1 this is an fpt-algorithm
parameterized by the number of vertices of the integer knapsack polytope VI .

Theorem 2 The bin packing problem can be solved in time |VI |2
O(d) · (log ∆)O(1) and

hence in fpt-time, parameterized by the number of vertices VI .

This algorithmic result shows that the bin packing problem can be solved efficiently
when the underlying knapsack polytope has an easy structure i.e. has not too many
vertices. However, since the total number of vertices is bounded by O(log ∆)d (see [2])

the algorithm has a worst case running time of (log ∆)2
O(d)

, which is identical to the
running time of the algorithm by Goemans and Rothvoß [1].

Furthermore, we were able complement this result by giving a matching lower bound.
We prove that the double exponential bound of the structure theorem is actually tight,
even in the mentioned special case of bin packing, when all items sizes s1, . . . , sd are of
the form si = 1

ai
for some ai ∈ Z≥1
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A Note on Online Machine Minimization

Yossi Azar ∗ Sarel Cohen (Speaker)∗

The machine minimization problem is to schedule a set of jobs with specified time
intervals on the smallest possible number of machines. Each job j arrives at its release
time rj , has to be processed for pj time units, and must be completed by its deadline
dj . The goal is to minimize the number of machines the algorithm uses for processing
all jobs by their deadlines. In the preemptive model each processed job may be stopped
and resumed later, possibly on a different machine. In the online setting, the jobs arrive
online and the attributes (rj , pj , dj) of the job are known to the algorithm at the release
time rj .

There are various well-known algorithms for scheduling jobs on machines. For ex-
ample, EDF (earliest deadline first) schedules the jobs currently in the system which
have the earliest deadlines. Another algorithm is LLF (least laxity first) which sched-
ules the jobs currently in the system in increasing order of their laxities (the jobs with
the least laxities are scheduled first). At time t (for rj ≤ t < dj), a job j has laxity
`j(t) = (dj − t− pj(t)) where pj(t) is the remaining processing time of job j at time t.

Let m be the minimum number of machines required in order to process all the jobs
by their deadlines in the offline setting, when all the jobs and their attributes (rj , pj , dj)
are known in advance. In the uniprocessor case (m = 1), if there exists any feasible
schedule, then both EDF ([4]) and LLF ([3]) find feasible solutions on a single machine.
In the multiprocessor case (m ≥ 2), any online algorithm must use more thanmmachines
on some inputs ([3]).

Let Pmax be the maximum processing time of a job and Pmin be the minimum process-
ing time of a job. Phillips, Stein, Torng, and Wein proved in [5] that LLF is O(log Pmax

Pmin
)-

competitive. They also showed a lower bound of 5/4 on the competitive ratio for any
deterministic algorithm, leaving a huge gap of O(log Pmax

Pmin
) on the competitive ratio of

LLF. They observed that EDF does not improve the competitive ratio by giving an
Ω(log Pmax

Pmin
) lower bound on EDF.

Nearly two decades later, Chen, Megow and Schewior (SODA 2016) [1] were the
first to significantly improve the competitive ratio. They presented an algorithm which
is O(logm)-competitive. In particular, for fixed m this yields a constant competitive
algorithm. They also showed that a variant of their algorithm is constant competitive
when all jobs have processing time windows that are either laminar or agreeable. Chen,
Megow and Schewior prove in [2] that job migration (the ability to choose a different
machine when resuming a job) significantly affects machine minimization. The number
of machines required in a non-migrative solution is unbounded as a function of m (the
number of machines required in a migrative solution). Hence, job migration is necessary
to achieve good competitive ratio.

∗School of Computer Science, Tel-Aviv University. E-mails: azar@tau.ac.il,
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It is not known if the online machine minimization problem admits an O(1)-
competitive algorithm or not, which is an important open problem in this field [1, 5, 6].

Our Contribution: As described above, it is a wide open question to narrow the
gap between the O(logm) upper bound and the constant lower bound for the machine
minimization problem. We go one step further in narrowing this gap by providing an
O( logm

log logm)-competitive algorithm.

Theorem 1. There exists an O( logm
log logm)-competitive algorithm for the online machine

minimization problem.

1 The Improved Algorithm

We assume m, the optimum number of machines, is known in advance for the online
algorithm, otherwise we can use the doubling technique and lose a factor of 4 in the
competitive ratio, as proved in Theorem 2.2 in [1].

Our most significant observation is an improvement of Lemma 3.3 in [1] which implies
an improved lower bound on the the minimum number of machines used by the optimum
algorithm. We need the following definitions. We say that a job is α-loose if pj < α(dj−
rj), and otherwise the job is α-tight. For a job j we define its interval as I(j) = [rj , dj).
For a set S of jobs we define I(S) :=

⋃
j∈S I(j), the interval I(S) of the set S is the union

of the job intervals of all the jobs in S. For I = ∪ki=1[ai, bi) where [a1, b1), . . . , [ak, bk)
are pairwise disjoint, we define the length of I to be |I| = ∑k

i=1(bi − ai). Our improved
Lemma is:

Lemma 2. [Proof is in the full paper] Let S1, . . . , Sd3m/αe be pairwise disjoint sets of

α-tight jobs such that I(S1) ⊆ . . . ⊆ I(Sd3m/αe). Then |I(Sd3m/αe)| ≥ 1
1−α |I(S1)|.

The original Lemma in [1] claimed that |I(Sd2m/αe)| ≥ 2|I(S1)|, so here we get

a bound which is more tight by a factor of Θ( 1
1−α), which is significant when 1 − α

approaches 0 as a function of m.
This allows us to improve the lower bound of Theorem 3.1 of [1]. To state the

improved lower bound we first need the following definition of a (µ, β)-critical pair.

Definition 3. Let G be a set of α-tight jobs and let T be a non-empty finite union of
time intervals. For some µ ∈ N and β ∈ (0, 1), a pair (G,T ) is called (µ, β)-critical if:
(1) each t ∈ T belongs to the intervals of at least µ jobs in G (i.e., |{j ∈ G|t ∈ I(j)}| ≥ µ),
(2) |T ∩ I(j)| ≥ β`j for any j ∈ G.

While [1] proved that the optimum algorithm uses at least m = Ω( µ
log 1

β

) machines,

we prove a stronger lower bound:

Theorem 4. [Proof is in the full paper] If there exists a (µ, β)-critical pair, then m =
Ω( µ

log 1
β

· log 1
1−α).

Corollary 5. If there exists a (µ, β)-critical pair, then µ = O(
m log 1

β

log 1
1−α

).

The proof of Theorem 4 is similar to the proof in [1], but we further exploit our
stronger Lemma 2 and consider α = α(m) as a function of m rather than a constant. This
allows us to choose a better value for α to obtain a better competitive ratio guarantee.
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We find a better competitive ratio for scheduling α-tight jobs. We use the algorithm
of [1] which we refer to as the “LaxityPartition” algorithm. Their algorithm considers
laxities as budgets which are partitioned into µ = m′+1 sub-budgets. In order to process
m jobs which are α-tight, their LaxityPartition algorithm opens O(m logm) machines.
We show that less machines are sufficient, more precisely, O( m logm

log(1/(1−α))) machines. This
follows from our Corollary 5, thus obtaining the following Lemma.

Lemma 6. The LaxityPartition algorithm for α-tight jobs with 0 < α < 1 is
O( logm

log(1/(1−α)))-competitive (by choosing µ = Θ( m logm
log(1/(1−α)))).

Here is the description of the O( logm
log logm)-competitive algorithm which we call the

“CombinedAlgorithm”:

• Schedule all α-loose jobs using EDF.

• Schedule all α-tight jobs using the LaxityPartition algorithm.

We show that CombinedAlgorithm is O( logm
log logm)-competitive. According to Lemma

6, scheduling all α-tight jobs using LaxityPartition is O( logm
log(1/(1−α)))-competitive. Ac-

cording to Theorem 2.3 in [1], scheduling all α-loose jobs using EDF is O(1/(1 − α)2)-
competitive. Thus, the competitive ratio of CombinedAlgorithm is O(max(1/(1 −
α)2, logm

log(1/(1−α)))), which is minimized for 1− α =
√

log logm
logm obtaining theorem 1.
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Rolf H. Möhring, and Kirk Pruhs, editors, Scheduling, number 10071 in Dagstuhl
Seminar Proceedings, Dagstuhl, Germany, 2010. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, Germany.

243



Maximizing the Minimum Gap

Marin Bougeret ∗ Guillerme Duvillié (Speaker) † Rodolphe Giroudeau ‡

1 Introduction

In this paper, we consider some scheduling problems using the length of the minimum
gap in the schedule as a performance measure. Even though the notion of gap has been
introduced with the study of minimum energy scheduling, the study of other natural
gap scheduling problems is relatively new.

Throughout this paper, we consider two variants of a problem introduced and left
open by Chrobak et al. in [2]. In this problem, a set of jobs with release dates and
deadlines have to be scheduled on a single machine while maximizing the length of the
minimum idle period between two adjacent jobs. Depending on whether the gaps on
length 0 (i.e. gaps delimited by two consecutive jobs) are taken into consideration, two
variants of this problem can be defined.

2 Problem Formalization

In the following, we are given a single machine and a set of unit length jobs J =
{J1, J2, . . . , Jn}. Each job J ∈ J can be seen as a couple (rJ , dJ) where rJ represents
the release date and dJ the deadline.

We define scheduling as follows.

Definition 1 (Scheduling). A scheduling is a function σ : J → Z that assigns to each
J ∈ J a slot σ(J).

A scheduling is said proper if and only if no two jobs are scheduled at the same time
and every job is scheduled after its release date but before its deadline. More formally:

1. for each couple of jobs (J, J ′) ∈ J 2, σ(J) 6= σ(J ′),

2. for each job J ∈ J , rJ ≤ σ(J) ≤ dJ

We now present the definitions of gaps we use in the rest of the paper.

Definition 2 (Strict Gap). Given a scheduling σ, two consecutive jobs J, J ′ ∈ J define
a strict gap of length |σ(J ′)− σ(J)− 1|.
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Definition 3 (Gap). Given a scheduling σ, two consecutive but not adjacent jobs J, J ′ ∈
J define a gap of length |σ(J ′)− σ(J)− 1|.

We can now define the following problem:

Optimization Problem 1. MaxMinGap

Input A single machine, a set of unit jobs J = {J1, J2, . . . , Jn} and two
functions r : J → Z, d : J → Z defining respectively the release date
and the deadline of each job.

Output A proper scheduling

Objective Maximize the minimum gap.

We will also consider a variant of this problem called MaxMinStrictGap where
the objective is to maximize the minimum strict gap.

3 Results

3.1 MaxMinStrictGap

In a first time we show that the decision version of this problem reduces to the feasibility
version of 1|rj , pj = p|∑Uj . This problem is characterized by a single machine, a set
of jobs J = {1, 2, . . . , n}. For each job a release date rj and a deadline dj are given,
and every job has length p. The objective is to know whether all jobs can be properly
scheduled, i.e. such that ∀j ∈ J , σ(j) ≥ sj , σ(j) + p ≤ dj and no two consecutive jobs
overlap.

Theorem 4. There exists a reduction from Decision MaxMinStrictGap to feasibil-
ity version of 1|rj , pj = p|∑Uj.

Since the feasibility version of 1|rj , pj = p|∑Uj can be solved in O(n log n) using
algorithm of Garey et al. [1], we get the following result.

Corollary 5. MaxMinStrictGap can be solved in polynomial-time with an algorithm
running in O(n log n log dmax), with dmax being the largest release date among the jobs
release dates.

3.2 MaxMinGap

Then, we present a polynomial dynamic programming for the decision version of
MaxMinGap. We follow a reasoning scheme similar as the one used by Chrobak et
al. [2] to highlight polynomial-time algorithm for other gap scheduling problem. In
a first time, we show that we can narrow the research to schedules verifying Earliest
Deadline Property (EDP).

245



Proposition 6. We can restrict our attention to schedules σ that verify EDP, i.e. such
that at any time t, either machine is idle, either the job with the smallest deadline among
the released jobs is scheduled. If at least two jobs can be scheduled at time t, then the
order is chosen arbitrarily.

Then we show that possible schedules dates of jobs can be chosen in a set of at most
2nn3 without losing solutions. Based on these properties, we shows that a dynamic
programming can solve the decision version of the problem in time O(n10).

The dynamic programming algorithm is based on the fact that once the job with
the largest deadline has been scheduled, remaining jobs can be partitioned into two sets
from which we can define two subinstances. We can prove that if both subinstances are
positive, so does the original one. It follows that an instance I is positive if and only if
there exists a schedule of the job with the largest deadline that splits I into two positive
subinstances.

This strategy is thus to try all possible schedule of the job with the largest deadline,
split the instance into two smaller instances and apply recursively the strategy in order
to get trivially positive or negative instances.
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Problems of Scheduling with Imprecise Computation

Revisited
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1 Introduction

The research area of Scheduling with Controllable Processing Times (SCPT) has been
active for more than 35 years. What is unusual is that during all these years there
has been a parallel stream of research, termed Scheduling with Imprecise Computation
(SIC ). In the range of models studied within the SIC research the processing machines
are seen as processors, the jobs are computational tasks, and these tasks are allowed to
be processed partially, thereby generating errors of computation. No close examination
is needed to observe that the SIC models are versions or, more precisely, particular
meaningful interpretations of the SCPT models. Both the SCPT and the SIC studies
address essentially the same range of problems, and often apply the same methods.

The purpose of this paper is to clarify and improve the running times needed to solve
the problems traditionally studied in the SIC research, so that in many occasions the
best possible results can be achieved.

2 The Models

The jobs of set N = {1, 2, . . . , n} have to be processed on parallel machines
M1,M2, . . . ,Mm, where m ≥ 2. In the SCPT setting, the actual processing time p(j)
of job j ∈ N is not given in advance but has to be chosen by a decision-maker from a
given interval [l (j) , u (j)]. Such a decision results in compression of the longest process-
ing time u (j) down to p(j), and the value x(j) = u (j)− p(j) is called the compression
amount of job j. Compression may decrease the completion time of each job j but incurs
additional cost.

Given m parallel machines, we distinguish between the identical machines and the
uniform machines. In the latter case, it is assumed that machine Mi has speed si,
1 ≤ i ≤ m. If for job j the value u (j) is compressed to p (j) and this job is assigned to
machine Mi alone then the duration of such processing is p (j) /si.
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Each job j ∈ N is given a release date r(j), before which it is not available, and a
deadline d(j), by which its processing must be completed. In the processing of any job,
preemption is allowed.

Let C (j) denote the completion time of job j ∈ N , provided that its processing time
is equal to p(j). A schedule is called feasible if no job j is processed outside the time
interval [r(j), d(j)]. To solve a problem with fixed processing times means either to find
a feasible schedule for the corresponding machine environment if it exists or to report
that such a schedule does not exist. We denote a generic feasibility problem with fixed
processing times by α|r(j), C(j) ≤ d (j) , pmtn|−. Here, in the first field either α = P
or α = Q, for identical parallel machines and for uniform machines, respectively.

Solving a typical problem from the SCPT range requires two decisions: (1) find-
ing the compression amounts x(j) for all jobs, and (2) determining a deadline-feasible
preemptive schedule with actual processing times p(j) = u (j) − x(j). The objective is
to minimize a certain penalty function Φ that depends on compression amounts x(j).
For the range of problems traditionally considered in the SCPT literature, the most
studied objective function represents the total compression cost and we denote it by
ΦΣ =

∑
j∈N wT (j)x(j), where wT (j) is the unit cost, i.e., the cost of compressing job

j ∈ N by one unit of time, and given by a non-negative real number. Problems of min-
imizing the maximum compression cost are mainly studied within the SIC body of re-
search; we denote such an objective function by Φmax = max{x(j)/wM (j)|j ∈ N}, where
for a given positive weight wM (j) the fraction 1/wM (j) represents the unit cost. To refer
to an SCPT problem, we use the generic notation α|r(j), p(j) = u (j)−x(j), C(j) ≤ d (j) ,
pmtn|Φ.

The SCPT problems can be interpreted in terms of SIC as follows. The jobs are seen
as computational tasks to be processed with preemption in a computing system that
consists of several parallel processors (machines). In computing systems that support
imprecise computation, some computations (image processing programs, implementa-
tions of heuristic algorithms) can be run partially, producing less precise results. A task
with processing requirement u (j) can be split into a mandatory part which takes l (j)
time, and an optional part that may take up to u (j) − l (j) additional time units. If
instead of an ideal computation time u (j) a task is executed for p(j) = u (j)−x(j) time
units, then computation is imprecise and x(j) corresponds to the error of computation.
In this settings, the objectives ΦΣ and Φmax are understood as the total weighted error
and the maximum weighted error, respectively. A popular research direction in SIC is
related to the lexicographical optimization of the two criteria; see [2]. If the maximum
weighted error Φmax should be minimized first and then further optimization is per-
formed in the obtained class of solutions to minimize the total weighted error ΦΣ, then
the relevant problem is generically denoted by α|r(j), p(j) = u (j) − x(j), C(j) ≤ d (j) ,
pmtn|Lex (Φmax,ΦΣ). In the counterpart with Lex (ΦΣ,Φmax), the goal is to find a
schedule that minimizes maximum weighted error among all schedules with the smallest
total weighted error.

3 Main Results

Problems P |r(j), C(j) ≤ d (j) , pmtn|− and Q|r(j), C(j) ≤ d (j) , pmtn|− are known to
be solvable in O

(
n3
)

time and in O
(
mn3

)
time, respectively by a reduction to finding the

maximum flow in special bipartite networks. In the SIC literature, the following claim
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is widely accepted: problem P |r(j), C(j) ≤ d (j) , pmtn|− can be solved in O
(
n2 log2 n

)

time by using a modified network; see [2, 3]. We show that although such an approach
will work in the case of a single machine, its extension to parallel machines is not possible.
Thus, the estimates O

(
n3
)

and O
(
mn3

)
produce the lower bounds on the running times

of possible algorithms for solving problems P |r(j), p(j) = u (j) − x(j), C(j) ≤ d (j) ,
pmtn|Φ and Q|r(j), p(j) = u (j)− x(j), C(j) ≤ d (j) , pmtn|Φ, respectively.

Most of the results known in the SIC literature on minimizing the total error rely on
traditional techniques of finding a max-flow or a min-cost max-flow, which gives the run-
ning times of O

(
n4 log n

)
and O

(
mn4

)
for problems P |r(j), p(j) = u (j)− x(j), C(j) ≤

d (j) , pmtn|ΦΣ and Q|r(j), p(j) = u (j)−x(j), C(j) ≤ d (j) , pmtn|ΦΣ; see [3]. We show
that for these problems the lower bounds of O

(
n3
)

and O
(
mn3

)
can be achieved by the

use of McCormick’s method [4] for finding the max-flow in a network in which some arcs
have capacities that linearly depend on an arc-related parameter.

In the case of the problems of minimizing the maximum error, we reduce the rel-
evant problems to finding a lexicographically sharing max-flow in a network in which
capacities of some arcs depend on a common parameter. Applying the techniques de-
veloped by Gallo et al. [1], we deduce that the best possible running times of O

(
n3
)

and O
(
mn3

)
can be achieved for problems P |r(j), p(j) = u (j) − x(j), C(j) ≤ d (j) ,

pmtn|Φmax and Q|r(j), p(j) = u (j)−x(j), C(j) ≤ d (j) , pmtn|Φmax, respectively. More-
over, the same running times hold for the problems with the objectives Lex (Φmax,ΦΣ)
and Lex (ΦΣ,Φmax). This considerably improves the previously known running times,
e.g., from O

(
mn5

)
to O

(
mn3

)
for problem Q|r(j), p(j) = u (j) − x(j), C(j) ≤ d (j) ,

pmtn|Lex(ΦΣ,Φmax); see [2].
Furthermore, it is also possible to design algorithms with the same running times

for the problems on identical and uniform parallel machines, respectively, to minimize
a quadratic objective function Φquad =

∑
w′ (j)x (j)2, as well as for minimizing various

lexicographic combinations of the functions ΦΣ, Φmax and Φquad.
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A New Mixed Time Framework for the
Periodically Aggregated Resource-Constrained

Project Scheduling Problem
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1 Introduction

We consider a project scheduling problem in a context such that temporal aspects (start
and completion of activities, precedence between activities) are handled precisely, while
resource consumption is evaluated more roughly over aggregated periods. Hence, the
Periodically Aggregated Resource-Constrained Project Scheduling Problem (PARCPSP)
is well-suited for an intermediate planning/scheduling decision level, in particular with
human resources or energetic resources. This strongly NP-hard problem, introduced in
[1] and in-depth studied in [2], has been modelled by means of a Mixed Integer Linear
Programming (MILP) formulation, based on a mixed time framework. In this abstract,
we present an alternative way to manage both continuous and discrete temporal repre-
sentations simultaneously, in order to derive a new MILP formulation for a purpose of
theoretical and computational comparison.

2 Periodically Aggregated Resource-Constrained Project
Scheduling Problem

The problem consists in finding a non-preemptive schedule that minimises the execution
duration of a project (1) under precedence constraints (2) and periodically aggregated
resource constraints (3). The project is defined by a set A of n activities and a set R
of m renewable resources. At each instant of its execution, activity i (processing time
pi) requires a fix amount (ri,k) on resource k (capacity bk). Precedence relations are
represented by an activity pair list (E). The time horizon is subdivided into periods of
parameterized length ∆ (positive real). An abstract formulation for the PARCPSP is:

Minimise Sn+1 − S0 (1)
s.t. Si2 − Si1 ≥ pi1 ∀(i1, i2) ∈ E (2)

∑

i∈A
ri,k

di,`(S)

∆
≤ bk ∀k ∈ R ∀` ∈ Z (3)
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Where: Si is the start date of activity i, S0 and Sn+1 denote respectively the least start
date and the greatest completion date, and di,`(S) is the execution duration of activity
i in period `, i.e. the length of the intersection of two time intervals: the `th period (i.e.
[(`− 1)∆, `∆]) and the execution interval of activity i (i.e. [Si, Si + pi]). Hence, the term
ri,k

di,`(S)
∆ is the average demand of activity i on resource k in period `.

di,`(S) = max(0,min(Si + pi, `∆)−max(Si, (`− 1)∆))

3 A new mixed time framework

Two temporal representations coexist. On the one hand, start dates Si permit to handle
events and precedence exactly (continuous time representation). On the other hand,
lengths di,`(S) have to be computed in every period ` to evaluate the resource usage
(discrete time representation). In terms of modelling, how to ensure a cohesion between
these two temporal representations?

The initial MILP introduced in [1], adapted from [3], uses binary variables with an
increasing step behaviour, and translate 6 out of 13 relations from Allen’s algebra [4]
(abstracts all possible relative positioning of two time intervals) into linear constraints.
In this first model, constraints with a big-M term are required.

We design another approach to compute di,`(S) values. This second model involves
more (continuous) variables but less constraints, none of which have a big-M term.

Suppose the planning horizon contains L consecutive periods {1, · · · , L}, so that
the time interval covered is [0, L∆]. For every activity i, in every period ` (time in-
terval [(`− 1)∆, `∆]), two lengths are considered: the length λi,`(S) of the intersection
of the period and [0, Si], and the length µi,`(S) of the intersection of the period and
[Si + pi, L∆].

λi,`(S) = max(0,min(∆, Si − (`− 1)∆)) µi,`(S) = max(0,min(∆, `∆− Si − pi))
The new mixed time framework relies on the fact that the three intervals whose length

is measured by λi,`(S), di,`(S) and µi,`(S) form a partition of period ` .

λi,`(S) + di,`(S) + µi,`(S) = ∆

i

Si

pi

`
1 2 3 4 5 6 7 8 9 10 11

`λi `µi

λi,` = ∆ λi,` = 0

µi,` = 0 µi,` = ∆

di,` = 0 di,` = ∆ di,` = 0

Figure 1: Principle of the new mixed time framework
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Let `λi (S) (respectively `µi (S)) the index of the period that contains Si (respectively
Si + pi). Note that λi,`(S) and µi,`(S) are equal to either 0 or ∆ in almost every period
`, with a decreasing (respectively increasing) step behaviour (see Fig. 1).

λi,`(S)





= ∆ if ` < `λi (S)
∈ [0,∆] if ` = `λi (S)
= 0 if ` > `λi (S)

µi,`(S)





= 0 if ` < `µi (S)
∈ [0,∆] if ` = `µi (S)
= ∆ if ` > `µi (S)

The values of `λi (S) and `µi (S) are encoded by binary variables zλi,`(S) and zµi,`(S) that
follow the same step behaviour.

zλi,`(S)

{
= 1 if ` ≤ `λi (S)
= 0 otherwise zµi,`(S)

{
= 1 if ` ≥ `µi (S)
= 0 otherwise

Thus, linear lower and upper bounds on λi,`(S) and µi,`(S) can be derived (note that
a step behaviour of the binary variables is enforced by transitivity).

zλi,`+1(S) ≤ λi,`(S)

∆
≤ zλi,`(S) zµi,`−1(S) ≤ µi,`(S)

∆
≤ zµi,`(S)

It remains to ensure that each activity i is processed during exactly pi time units; by
doing so, the values of λi,`λi (S)(S) and µi,`µi (S)(S) are implicitly balanced.

L∑

`=1

di,`(S) =

L∑

`=1

(∆− λi,`(S)− µi,`(S)) = pi

Finally, Si can indeed be inferred directly from either λi,`(S) or µi,`(S).

Si =
L∑

`=1

λi,`(S) ⇔ Si + pi =
L∑

`=1

λi,`(S) +
L∑

`=1

di,`(S) = L∆−
L∑

`=1

µi,`(S)
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A Variant of the Periodic Event Scheduling Problem and its

Cycle Periodicity Formulation

Tobias Hofmann ∗

1 Introduction

The employment of industrial robot systems in the automotive industry noticeably
changed the view of production plants and led to a tremendous increase in productivity.
Nonetheless, rising technological complexity, the parallelization of production processes,
as well as the crucial need for respecting specific safety issues pose new challenges for
man and machine. Furthermore, the progress shall proceed – production cannot be too
fast, too safe or too cheap.

This is the topic that me and my colleagues from Chemnitz University of Technol-
ogy tackle within the ERDF research project viRAL (Validierte Inbetriebnahme von
Roboteranlagen mit automatischer Logik- und Lageprüfung) joint with Voith Engineer-
ing Services GmbH and Fraunhofer IWU in Chemnitz.

Our goal is to develop algorithms, guidelines and tools that make the commissioning
of industrial robot systems more dependable by verifying the programs of robots and
logical controllers. This in particular includes optimizing the schedule of the robot
systems in order to ensure desired period times as well as conflict free timetables already
in the planning stage.

2 The Periodic Event Scheduling Problem and its Indus-
trial Application

The talk will be about a periodic scheduling problem as it typically appears in the
context of generating train timetables (see e. g. Liebchen and Möhring [2]). Because
in both scenarios – train timetable design as well as robot system scheduling – one
is confronted with temporal precedences, collision constraints and often also periodic
processes. Therefore the mathematical models used for train timetabling scenarios are
well applicable to the scheduling of robot systems.

The basic modelling framework considered in this talk will be the periodic event
scheduling problem proposed by Serafini and Ukovich in 1989 [5], which can be adapted
to the industrial environment, yielding a number of integer programming formulations.
One of them is the following.
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Definition 1 (Periodic Event Scheduling Problem).
Given a directed graph D = (V,A) with l, u ∈ QA, find an x ∈ QV as well as a p ∈ ZA

such that
∀ a = (i, j) ∈ A : la ≤ xj − xi + T pa ≤ ua.

Furthermore, the considered robot scheduling scenario gives rise to additional fre-
quency constraints as well as the objective of minimizing the period time of the given
robot systems. This leads to a variant of the periodic event scheduling problem involving
more structural properties than the standard formulation.

3 The Cycle Periodicity Formulation for the Periodic
Event Scheduling Problem

Besides its comprehensive modelling capabilities, one of the typical characteristics of the
periodic event scheduling problem is its large number of different integer programming
formulations. In our case its cycle periodicity formulation seems to be a good choice
in order to reduce the number of integer offset variables p ∈ QA, which are the hard
part of solving periodic event scheduling problems (see e. g. Liebchen [1]). Whereby
for a fixed integer offset vector p ∈ ZA, the periodic event scheduling problem can be
solved in O(|V ||A|) time, the periodic event scheduling problem in general is proved to
be NP-complete (see Odijk [4]).

Furthermore, it is known that it suffices to require the cycle periodicity equations
only for ν = |A| − |V | − 1 fundamental cycles of a connected periodic event scheduling
problem instance (see Nachtigall [3]). In order to get a well solvable cycle periodicity
formulation, it plays a crucial role to choose a suitable cycle basis of the underlying
precedence graph D.

Our actual research focuses on the latter aspect. We identified appropriate cycle
basis as well as admissible bounds for the remaining integer offset variables.
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