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PARALLEL JOBS: DYNAMICALLY UNFOLDING DAG
•  Node:	Unit	work	task.	
•  Edge:	Dependence	between	tasks.	

•  W:	Work	=	Total	number	of	nodes	
•  S:	Span	=		Length	of	the	longest	chain	

•  ASSUMPTION:	We	do	not	know	the	work,	span	
or	the	structure	of	the	DAG	in	advance.	

•  With	m	processors	of	speed	f,	list	scheduling	
guarantees	a	makespan	of	W/fm	+	S/f	(within	
2	of	opVmal).	

	



POWER CONSTRAINT
• At	any	Vme,	we	can	only	use	power	P,	but	can	
turn	on	or	turn	off	processors.	
• m	processor	running	at	speed	f	use	power	P	=	
mf⍺	(⍺	>	1).	
• With	increasing	m,	the	speed	of	individual	
processor	(f)	decreases,	but	you	can	do	more	
work	in	each	Vme	step.	
• mmax=maximum	number	of	processors.	
• We	are	allowed	to	change	the	configuraVon	as	
the	job	executes,	but	fewer	configuraVon	
changes	is	be\er.	

	

m	 f	 mf	

1	 10	 10	

2	 7.07	 14.14	

3	 5.77	 17.31	

4	 5	 20	

5	 4.47	 22.36	

P=100,	⍺=2,	assuming	all	
processors	run	at	same	speed.		
		



PROBLEM DEFINITION
•  INTUITION:	We	want	to	turn	the	maximum	
number	of	processors	we	can	use.	
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PROBLEM DEFINITION
•  INTUITION:	We	want	to	turn	the	maximum	
number	of	processors	we	can	use.	
• With	S	configuraVon	changes,	we	get	
• opVmal	makespan	if	mmax>	maximum	
width,		
•  about	2-compeVVve	otherwise.		

• QuesVon:	What	is	the	minimum	number	of	
configuraVon	changes	to	get	O(1)-
compeVVve	makespan?		 Executed	

Ready	



The Home-Away-Pattern Set Feasibility
Problem

Dirk Briskorn1
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Single Round Robin Tournament

• 2n teams

• 2n−1 rounds

• each team plays each other team exactly once

• each team plays exactly once per round
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Scheduling SRRTs

• Scheduling SRRTs by First-break-then-schedule

• First, the venue of each team in each round is fixed

• Second, matches are arranged by pairing home-teams and
away-teams

• Home-Away-Pattern Set Feasibility Problem: Given the venue
for each team in each round, is there a corresponding SRRT?

1 2 3 4 5

1 H H H H H
2 A H H H A
3 H A H A A
4 A A A H H
5 H H A A H
6 A A A A A
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Home-Away-Pattern Set Feasibility

• Some obvious necessary conditions

• Number of away-teams has to equal number of home-teams in
each round.

• There must not be two identical home-away patterns.

• Some less obvious ones

• Miyashiro R., Iwasaki H., Matsui T. (2003) Characterizing
Feasible Pattern Sets with a Minimum Number of Breaks. In:
Burke E., De Causmaecker P. (eds) Practice and Theory of
Automated Timetabling IV. PATAT 2002. Lecture Notes in
Computer Science, vol 2740. Springer, Berlin, Heidelberg (for
minimum number of breaks)

• B. (2008): Feasibility of home-away-pattern sets for round robin
tournaments, Operations Research Letters, Vol. 36, No. 3, pp
283-284.
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Home-Away-Pattern Set Feasibility
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The Routing Open Shop Problem:
Some Open Problems
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Informal introduction to the Routing Open Shop Problem

The combination of OPEN SHOP and Metric TSP

v0

v1 v2

v3

v4v5

{J1, . . . , Jn}

M1

...
Mm

pji — processing time of the operation of job Jj and machine Mi ;

G = 〈V ,E 〉 — transportation network;

τkl — travel time between vk and vl ;

Ri (S) = max
k

(
max
Jj∈Jk

Cji (S) + τ0k

)
;

Rmax(S) = maxRi (S)→ minS — the makespan.
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Lower bound

`i =
n∑

j=1

pji — load of machine Mi ,

dj =
m∑
i=1

pji — length of job Jj ,

`max = max `i — maximal machine load,

dk
max = max

Jj∈Jk

dj — maximal length of job from vk ,

∆k =
∑

Jj∈Jk

dj — total load of vertice vk ,

T ∗ — length of the shortest route over G (TSP optimum)

Standard lower bound

R̄ = max

{
`max + T ∗,max

k

(
dk
max + 2τ0k

)}
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Open Problems (not a complete list)

Routing open shop

Some Known Facts

1 NP-hard even for
〈m = 2,G = K2〉 (and a bunch
of polynomially solvable classes
for that case).

2 For general case best known
approximation algorithm is
O(logm)-approximate.

Open Problems

1 Is there an const-approximation
for general case?

2 Consider function

F (m) = sup
I∈Im

R∗max(I )

R̄(I )
. Is F (m)

bounded by any constant?

Routing open shop with preemptions

Some Known Facts

1 Problem with 〈m = 2,G = K2〉
is polynomially solvable (and
R∗max = R̄).

2 Problem with G = K2 is
strongly NP-hard if m is a part
of input.

3 Problem with 〈m = 2,G = K3〉
is polynomially solvable IF for
some node ∆k > R̄ − 2τ0k .

Open Problems

1 Complexity of
〈m = 2,G = K3〉,
〈m = 3,G = K2〉,
〈m = 2,G = Kconst〉,
〈m = const,G = K2〉 cases.

Ilya Chernykh, Alexandr Kononov The Routing Open Shop Problem: Some Open Problems 4 / 4



Delayed-Clairvoyant Scheduling
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Delayed-Clairvoyant 
Scheduling

1|online� time� nclv, pmtn, rj |
X

Fj

1|online� time� clv, pmtn, rj |
X

Fj

Shortest Remaining Processing Time (SRPT) is optimal

Any deterministic algorithm is                     competitive   ⌦(n
1
3 )

Shortest Elapsed Time First (SETF) is               speed                competitive(1 + ✏) 1 +
1

✏

Delay factor ↵ 2 [0, 1]

1 + ↵

1� ↵
SETF+SRPT is              competitive  ↵ < 1For

1|online� time� delayed� clv, pmtn, rj |
X

Fj



Open problems 
• Formalize non-uniform delay factor reduction 

• Get an analogous result for clairvoyance when 

• Weighted Flow time:   

↵ < 1

HDF is               speed                competitive(1 + ✏) 1 +
1

✏

Is WSETF+HDF                  speed                 competitive  for                        ?(1 + ✏) 1 +
1

✏
↵ =

1

1 + ✏



A Chair’s Scheduling Problem

Samir Khuller

Research supported by NSF CCF 0937865, CCF 1217890 and Google.

University of Maryland



Whats	the	problem?	

•  Alumni,	Companies,	Deans	office,	Provost’s	
office,	unhappy	students,	PhD	students,	
faculty	candidates,	hiring	mee?ngs,	faculty,	
staff….	

•  Lots	of	hour	long	mee?ngs	(some	mul?ple)!	
•  Mee?ngs	from	9am	to	6pm	only	
•  GOAL:	Maximize	number	of	days	at	home!	



Scheduling to Minimize AcOve-Time

B = 3
n = 9

•  n jobs
–  release Omes  and 

deadlines  
–  length 

•  batch machine
–  Ome is sloWed
–  in each slot, “acOve” or 

“inacOve”
–  “acOve” slot à can 

schedule ≤ B jobs

• minimize number of 
“acOve” slots

Time	



Scheduling to Minimize AcOve-Time

B = 3
n = 9

FOUR ACTIVE SLOTS

•  n jobs
–  release Omes 𝑟↓𝑖 ∈𝑍 

and deadlines 𝑑↓𝑖 ∈𝑍 

–  length ℓ↓𝑖 
•  batch machine

–  Ome is sloWed
–  in each slot, “acOve” or 

“inacOve”
–  “acOve” at t à can 

schedule ≤ B jobs

• minimize number of 
“acOve” slots Lets	focus	on	UNIT	length	jobs	for	now	



Batching Algorithms

•  Wolsey’s greedy algorithm [Wolsey, 1982]

– O(log n)-approximaOon

•  Exact alg via Dynamic Programming  
[Even, Levi, Rawitz, Schieber, Shahar, Sviridenko, 2008]

– Time complexity: O(n^2 T^2 (n+T))

•  Faster exact algorithm?

•  Also models taxi drop offs to the train staOon 
from Dagstuhl.



Lazy AcOvaOon

B = 3
n = 9

•  n jobs
–  release Omes  and 

deadlines  
–  length 

•  batch machine
–  Ome is sloWed
–  in each slot, “acOve” or 

“inacOve”
–  “acOve” slot à can 

schedule ≤ B jobs

• minimize number of 
“acOve” slots

Each	column	is	a	set	of	capacity	B	

Lets	focus	on	UNIT	length	jobs	for	now	



•  Step I. Scan slots right to lem, and decrement 
deadlines in overloaded slots
–  favor decremenOng deadlines of jobs with earlier 

release Omes 

B=3

Lazy AcOvaOon [Chang, Gabow, K., 2012]



•  Step I. Scan slots right to lem, and decrement 
deadlines in overloaded slots
–  favor decremenOng deadlines of jobs with earlier 

release Omes 
•  Step II. 
– Order jobs s.t.  
– Consider deadlines  LTR:

•  Schedule at  any outstanding jobs with deadline 
•  Fill the remaining capacity with feasible jobs of later 

deadline, favoring those with earlier deadline

Lazy AcOvaOon [Chang, Gabow, K., 2012]



Lazy	Ac?va?on	Maximizes	Throughput	

•  On	infeasible	instances,	Step	I	preserves	the	
maximum	number	of	jobs	

B	=	3	



Arbitrary-length	Jobs	[Chang,K,Mukherjee	SPAA	2014]	

NON-PREEMPTIVE:		
NP-hard	via	3-PARTITION	

PREEMPTIVE	complexity?	

B=2	 B=2	

ac?ve	?me:	4	 ac?ve	?me:	3	

We	have	a	2	approxima?on	We	have	a	3	approxima?on	(BusyTime)	



Rela?on	with	max-flow	

  

�  Cost of a soluOon: number of open or acOve slots. 
�  ObservaOon: Given a set of integrally open slots, max-flow will 

find a feasible integral assignment of jobs, if there exists one. 

�  This follows from max-flow integrality theorem. 

           

ts

: Open slots
: Non-unit jobs

Capacity B edgesUnit capacity edges

Edge capaciOes 
equal to job lengths

JOBS	
TIME	
SLOTS	



Minimal	Feasible	Solu?ons	

•  Gegng	job	assignments	from	a	set	of	ac?ve	
slots:	network	flow	computa?on	

•  Minimal	feasible	solu?ons	(MFS):	shugng	
down	any	ac?ve	slot	à	infeasible	

•  Start	from	all	slots	being	ac?ve,	as	long	as	a	
feasible	schedule	is	possible,	close	a	slot		



Minimal	Feasible	Solu?ons	
6	

4	

1 

4	

4	

4	

B=5	 OPTIMAL	SOLUTION.		COST=B+1 

1 

1 

1 

1 

1 

1 

1 



Minimal	Feasible	Solu?ons	
6	

1 

B=5	

1 

1 

1 

A	MFS	SOLUTION.		COST=2B 

4	

4	

4	

4	

1 

1 

1 

1 



Every	MFS	is	3-approximate	

•  Every	MFS	can	be	“lek-shiked”	
•  Dichotomy	of	ac?ve	slots	

B=5	

full	 non-full	

	B	jobs	
less	than	B	jobs	



LP	rounding	based	algorithm		
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What	does	the	LP	give?	

•  Factor	2	approxima?on	(?ght).		
•  [Kumar-Khuller]	MFS	that	shuts	slots	lek	to	
right	also	gives	factor	2	approxima?on.	

•  Local-Search	is	not	op?mal	but	might	be	<2.	
•  S?ll	do	not	know	if	its	NP-complete..	



Parallel Machine Scheduling with Weighted Completion
Time Objective and Online Machine Assignment

Sven Jäger

Combinatorial Optimization
and Graph Algorithms

Technische Universität Berlin
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13 June 2017



P ||
∑

wjCj

Given: Jobs with processing times pj ≥ 0 and weights wj ≥ 0, j = 1, . . . , n
and number m of machines

Task: Process each job non-preemptively for pj time units on one of the m
machines such that the total weighted completion time

∑n
j=1 wjCj is

minimized.

1

4

2

5

3

6
1

4 2 5

3 6

0 timeC4 C1
C2

C3C5
C6

Sven Jäger (TU Berlin) P||
∑

wjCj with Online Assignment 13 June 2017



WSPT Rule

WSPT Rule

1 Sort jobs by non-increasing ratios wj/pj .

2 Do list scheduling in the obtained order.

Theorem [KK86] The WSPT rule has performance guarantee
1+
√

2
2 ≈ 1.207.

Worst case instance: wj = pj for all j .

time

Sven Jäger (TU Berlin) P||
∑

wjCj with Online Assignment 13 June 2017



Online Machine Assignment
I Jobs arrive sequentially and must immediately be assigned to the

machines.
I After all jobs are assigned, the jobs on every machine can be

sequenced optimally.

MinIncrease

Assign each job to the machine that minimizes the increase of the current
objective value.

weight

time
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Competitive ratio of MinIncrease

Observations

I If jobs arrive ordered by decreasing wj/pj , MinIncrease does the
same as list scheduling.

I If jobs arrive ordered decreasingly or increasingly by wj/pj ,

MinIncrease is 1+
√

2
2 -competitive.

I In general, MinIncrease is 3
2 −

1
2m -competitve.

Open Question

Is MinIncrease always 1+
√

2
2 -competitive?
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Appendix
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Competitive Ratio for Stochastic Counterpart

Theorem (MUV06)

The algorithm that assigns each job to the machine with minimal increase
of expected weighted completion time is 1 + (m−1)(∆+1)

2m -competitive,
where ∆ is an upper bound on the coefficient of variation of the
processing times.
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Makespan minimization on parallel machines

P||Cmax: Given a set J of n jobs with processing times pj ∈ N, j ∈ J, schedule
all jobs in J on m parallel machines so as to minimize the makespan T .

22O(T )

· (n + log m)O(1) [Alon, Azar, Woeginger; SODA 1997]

maximum processing time pmax: pmax � T

22O(p2
max log pmax) · (n + log m)O(1) [M., Wiese; IPCO 2014]

2O(p2
max log pmax) · (log n + m)O(1) [Knop, Koutecky; J. Sched. 2017]

number of distinct processing times p: p � pmax

mp(p)O(p)(log ∆)O(p) [Goemans, Rothvoss; SODA 2014]

|V |2
O(p)
· (n + log m)O(1) [Jansen, Klein; SODA 2017]

P||Cmax in time f (p) · (n + log m)O(1) for some function f

Matthias Mnich MAPSP 2017 Open Problems 2
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