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that spans a given set of special
vertices
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Weighted Tree Augmentation (WTAP):

» Input: Tree T = (V, E),
links LC V x V,
non-negative weight w; for
eachle L

» Goal: find minimum-weight
collection H C L such that
T 4+ H is 2-edge connected

Unit-weight tree augmentation
(TAP): special case where w; =1
for all links [
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[Fredrickson and Jaja '81] WTAP
and TAP are NP-hard even if the
tree has constant diameter.
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[Fredrickson and Jaja '81] WTAP
and TAP are NP-hard even if the
tree has constant diameter.

[Cheriyan, Jordan, Ravi '99] TAP
is NP-hard even if the links form
a cycle on the leaves of the tree.
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For a given instance (7', w) of WTAP,
we use opt for the weight of an
optimum feasible solution.
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For a given instance (7', w) of WTAP,
we use opt for the weight of an
optimum feasible solution.

An efficient algorithm A is an
a-approximation for WTAP if it
produces a link set of weight no more
than « opt, for all instances.

[Kortsarz, Krauthgamer, Lee '04] TAP
is APX-hard

—— there is a constant « such that no
(o — €)-approximation exists for any
€ > 0 unless P=NP.

factor a

<4 apx
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Popular approach:

» Formulate the given problem as
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Popular approach:

» Formulate the given problem as
mathematical program

» Relax it, so it can be solved

efficiently + apx
» Solve the relaxation, and round the
. . factor a
obtained solution 4 opt

» Let opt, be the optimum value of T ot

the relaxation, and show that the
solution has cost at most « opt,.
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The maximum ratio of opt and opt,
over all instances of the problem is
called the integrality gap of the

relaxation. 4 apx

-+ opt

factor > f3 t
-4 opt
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The maximum ratio of opt and opt,
over all instances of the problem is
called the integrality gap of the
relaxation. T™

Note: if the integrality gap of a

. . 4 t
relaxation is at least 3 then oo > (8 for factor zﬂt »
. . . -+ opt,
any a-approximation that uses this
relaxation
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» For link [ € L, let T(I) be the
unique path in T connecting the
endpoints of [
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» For link [ € L, let T(I) be the
unique path in T connecting the
endpoints of [

» For edge e € E, let cov(e) be the
set of links [ € L that cover ¢; i.e.,

cov(e)={leL:ecT()}

Folklore

S C L is a feasible solution for TAP iff
SNcov(e) #0, forall e E
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» Introduce indicator variable z; for each [ € L

» LP relaxation of IP:

le cov(e)
z>0
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» Introduce indicator variable z; for each [ € L

» LP relaxation of IP:

min Z Wy (P)
l
s.t. Z rp>1 (e€E)

le cov(e)
z>0

In what follows we let A be the coefficient matrix for the above
LP, and thus (P) can be rewritten as

min{w?z : Az > 1,2 > 0}
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» Pick an arbitrary fixed root r € V
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_— in-link
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Folklore Fact
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» Pick an arbitrary fixed root r € V

» Three types of links: [ = (u,v) is ...
» an up-link if u is an ancestor of v in T,
» a cross-link if T'(I) contains 7, and

» an in-link otherwise

Folklore Fact

Coefficient matrix A of LP (P) is network
matrix for up-link-only WTAP instances.

— (P) is integral in “up-link only” instances. crosslink

_— in-link
— up-link
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» Given an instance (T, w) of
WTAP, pick an arbitrary lea(u, v)
root r € V(T)

l,
l//
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» Given an instance (T, w) of
WTAP, pick an arbitrary
root r € V(T)

lca(u, v)

» For a link [ = (u,v) let the
Ica(u, v) be the lowest !
common ancestor of u and v 1’
in the r-rooted tree T

» Obtain a new instance
(T,w") by replacing each
cross link I = (u, v) by two
up-links (u,lca(u, v)) and !
(v,lca(u, v)) of the same
cost
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» The new instance is up-link
only and hence (P) is
integral
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» The new instance is up-link
only and hence (P) is

lca(u, v)
integral

» Note: opty s < 20pty ,

l,

» Gives a 2-approximation for "
WTAP, and this is best !
known!
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only and hence (P) is
integral

lea(u, v)
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The new instance is up-link
only and hence (P) is
integral

lea(u, v)

Note: opty ,» < 2optyp,,

l,
Gives a 2-approximation for "
WTAP, and this is best !
known!

Also shows that integrality
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It is sometimes convenient to
assume that our WTAP instances
are shadow complete:

lelL — l'elL,

whenever [’ spans a subset of ['s l
edges of T
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It is sometimes convenient to
assume that our WTAP instances
are shadow complete:

lelL — l'elL,

whenever [’ spans a subset of ['s l
edges of T

Clearly: assumption is w.l.o.g.

Introduction



» A WTAP instance (T, w) is
star shaped if all links [ € L r
cover 1 for some (arbitrary)
root node r € V
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» A WTAP instance (T, w) is
star shaped if all links [ € L r
cover 1 for some (arbitrary)
root node r € V

» Note: S C L is feasible iff
all leaf edges are covered

» WTAP instance is
edge-cover in disguise: pick
a minimum-weight collection
of links that covers all leaf
vertices

Introduction



» Edge-cover is
polynomial-time solvable — r
Star shaped WTAP
instances are
polynomial-time solvable
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» Edge-cover is . T

. . mim ¢ T
polynomial-time solvable —

Star shaped WTAP s.t. Z x>1
instances are le cov(e)
polynomial-time solvable (leaf edges ¢)
(P) for such instances is r>0

equivalent to the fractional

edge-cover LP
Fractional edge-cover LP 1/2

has integrality gap 4/3 12

There is an exact, tractable
LP for edge-cover

1/2
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» Introduce indicator variable z; for each [ € L

» LP relaxation of IP:

min Zwm (P)
l
s.t Z r>1 (e€ E)
le cov(e)
z>0
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» the figure shows tree T} for k =5 and unit weight links
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» The edge-labels of the links give a solution z for (P) of value
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» the figure shows tree T} for k =5 and unit weight links
(dashed)

» The edge-labels of the links give a solution z for (P) of value
2%k/3+1=13/3

» The best integral solution has value £+ 1 = 6.
— the integrality gap of (P) is ~ 3(k + 1)/2k and thus tends
to 3/2 for large k
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Theorem [Cheriyan, Karloff, Khandekar, K. '08]
LP (P) has integrality gap at least 3/2.
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» [Fredrickson & Jaja '81] 2-apx of WTAP (there are several
other ways of getting the same guarantee)

» [Kortsarz & Nutov '16] Intricate combinatorial 3/2-apx for
TAP (based upon [Even, Feldmann, Nutov, Kortsarz '01])

» [Cheriyan & Gao '15] Combinatorial (3/2 + €)-apx for TAP
based upon SDP lowerbound

» [Adjiashvili '17] LP-based 1.96-approximation for WTAP
where link weights are in [1, M] for a fixed M
Also: 5/3 + € in TAP special case

Comment: Adjiashvili's results are with respect to a stronger
TAP LP
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Theorem [Fiorini, GroB, K., Sanita '17]

There is an LP-relative (3/2 + €) approximation for WTAP for any
small € > 0 in the bounded link cost setting.
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Theorem [Fiorini, GroB, K., Sanita '17]

There is an LP-relative (3/2 + €) approximation for WTAP for any
small € > 0 in the bounded link cost setting.

v

We follow Adjiashvili's framework

v

Add certain subclass of rank-1 Chvatal-Gomory cutting planes
to Adjiashvili's LP (maintaining tractability)

Strongest LP-relative results for TAP/WTAP to date

v

v

(Fairly) simple algorithms and analysis
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» Tree T = (V,E), and constant ~
(later chosen to be O(M /€?) for
small € > 0)

» S C Fis a~v-bundle if it can be
covered by at most «y paths in T
» Easy observations:

(i) ~-bundles are forests with at
most 2 leaves, but their number
of edges need not be constant

. VY
(ii) there are no more than (/%)
~-bundles 2-bundle

» opty: optimum weight of a WTAP
solution for v-bundle B
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Theorem [Adjiashvili '17]

Let B be a forest with at most & leaves.
. . O(1
—» can compute opty in time | V¥ “,
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Theorem [Adjiashvili '17]

Let B be a forest with at most & leaves.
. . O(1
—» can compute opty in time | V¥ “,

Implies: can compute optg in polynomial time
for «v-bundles B and fixed

Strengthen (P) by adding constraints:

Z wir; > optg (B € By)
le cov(B)

2-bundle

B, : set of v-bundles

Adjiashvili's Framework



s.t. Z rp>1 (e€E)
lecov(e)

Z wyry > opty (B € Bﬁ’)
I Cov(B)

x>0

Consequence from earlier discussion: can solve (P1) in polynomial
time for fixed ~.

Adjiashvili’'s Framework
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» Goal: round solution z to P;.
» Facilitate this by decomposing ...

(i) T into subtrees T',..., T, and

(i) zinto z!,... 29
such that ...

(i) z°is feasible for Py in instance
induced by T7,

(i) YL, wTz? < (1+e)w'z for
small € > 0, and,

(i) structure of T is easier

Adjiashvili's Framework



» Let z be a solution to Py

Adjiashvili's Framework



» Let z be a solution to Py

» May assume that all edges e
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» Let z be a solution to Py

» May assume that all edges e
of T are lightly covered:
z(cov(e)) = O(1/¢)

» Repeatedly pick edge
utu? € T whose removal
creates subtrees T and T2

» Split z into z! and z?
feasible for P in induced
subinstances, by cloning
links that cover u!u?
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» Edge u'u? is lightly covered:
z(cov(ulu?)) = O(1/¢)

— cost of links covering this
edge is O(M /e)
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» Edge u'u? is lightly covered:
z(cov(ulu?)) = O(1/¢)
— cost of links covering this
edge is O(M /e)
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entirely in subtree T have
z-weight at least o = M /e?
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» Edge u'u? is lightly covered:
z(cov(ulu?)) = O(1/¢)

— cost of links covering this
edge is O(M /e)

» Pick a-thin u'u?: links
entirely in subtree T have
z-weight at least o = M /e?

» Can now charge weight
increase due to x-splitting to
xz-weight of links in the
decomposition parts
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Repeated decomposition creates
» subtrees T, T2 ..., T4,
and

» independent solutions
gt 2?29 for (Py)
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» Round feasible solution z*
foreach 1 <<k
independently
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» Round feasible solution z*
foreach 1 <i <k
independently

» Return the union of
solutions for sub-instances

Adjiashvili's Framework



Each (T, z%) will turn out to be
[B-simple:

» There is a center vertex
v € V(T whose removal
breaks T into subtrees
Ki,... K,

Cross
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Each (T, z%) will turn out to be
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» There is a center vertex
v € V(T whose removal
breaks T into subtrees
Ki,... K,

» Each Kj has a at most 3
leaves, and

» The fractional z’-weight of
links inside Kj is at most /3
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Each (T, z%) will turn out to be
[B-simple:

» There is a center vertex
v € V(T") whose removal
breaks 7' into subtrees

Ki,...,K,
» Each Kj has a at most 3
leaves, and

» The fractional z’-weight of
links inside Kj is at most /3

Cross

» Will choose
o, B O(M/e).
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» Define supp(z?) as the set of
links with positive zi-value

Cross
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» an in-link if 4 and v lie in
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» Define supp(z?) as the set of
links with positive zi-value

» Each uv € supp(z?) is ...
» an in-link if 4 and v lie in
K; for some j — 7

» a cross-link otherwise
—C

Cross
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» Define supp(z?) as the set of
links with positive zi-value

» Each uv € supp(z?) is ...
» an in-link if 4 and v lie in
K; for some j — 7

» a cross-link otherwise
—C

» Will use the better of two
rounding methods

Cross
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Theorem [Adjiashvili '17]

There is an algorithm that computes a
set S of links covering T"* such that

c(S) < Z wyz) + 2 Z wy )

leZ leC

Cross
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Theorem [Adjiashvili '17]

There is an algorithm that computes a
set S of links covering T"* such that

c(S) < Z wyz) + 2 Z wy )

leZ leC

Sketch:

» Create new solution y from z by
splitting each cross-link at center v;

Cross
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Theorem [Adjiashvili '17]

There is an algorithm that computes a
set S of links covering T"* such that

c(S) < Z wyz) + 2 Z wy )

leZ leC

Sketch:

» Create new solution y from z by
splitting each cross-link at center
v, easy to see:

wly < Z wyx; + 2 Z wyxy
el leC

Cross
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» Add center v to instance — K

Cross
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» Add center v to instance — K

» Note that y projected onto links
covering K' is a feasible solution
for this sub-instance

Cross
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» Add center v to instance — K

» Note that y projected onto links
covering K' is a feasible solution
for this sub-instance

» Can show: y satisfies bundle
constraints, and that K'is a
bundle

Cross
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» Add center v to instance — K

» Note that y projected onto links
covering K' is a feasible solution
for this sub-instance

» Can show: y satisfies bundle
constraints, and that K'is a
bundle

» Implies: fractional cost of y is as
large as optimum solution for K"
(which can be computed
efficiently).

Cross
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Theorem [Adjiashvili "17]

There is an algorithm that computes a set S of links covering T°
such that

) AN .
c(S) < 2)\2 wr] + Z wyx]
leT 3(A-1) lec

for any constant A > 1.
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There is an algorithm that computes a set S of links covering T°
such that

) AN .
c(S) < 2)\2 wr] + Z wyx]
leT 3(A-1) lec

for any constant A > 1.

» Let E) be all edges e € T that have 1/ inlink coverage:

>, 4z

le Incov(e)
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Theorem [Adjiashvili "17]

There is an algorithm that computes a set S of links covering T°
such that

) AN .
c(S) < 2)\2 wr] + Z wyx]
leT 3(A-1) lec

for any constant A > 1.

» Let E) be all edges e € T that have 1/ inlink coverage:

>, 4z

le Incov(e)

> =

» Can cover edges in E), at cost no larger than 2\ ",c7 wz}
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» Contract all edges in E) —
T*, and delete all inlinks

- - k)
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» Contract all edges in E) —
T*, and delete all inlinks

» Observe:
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instance is star-shaped,
and
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» Contract all edges in E) —
T*, and delete all inlinks

» Observe:

(i) The resulting WTAP
instance is star-shaped,
and

(i) z=A/(A—1)-z%is now

feasible for original TAP
LP (P)
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» Contract all edges in E) —
T*, and delete all inlinks

» Observe:

(i) The resulting WTAP
instance is star-shaped,
and

(i) z=A/(A—1)-z%is now
feasible for original TAP
LP (P)

» Hence: there is a solution
S C L for this instance of
cost no more than

4N s
_— W T
3(A—1) 2w

leC
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» Have seen: for the instance induced by 7%, can compute
feasible solution S of links of cost

, . , 4N ;
3 7 2 K 2A 7 7
mln{lg wiz) + 2w, 20> wai + 30-1) > " wzf}
€T leC lel leC
for any v > 1
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» Have seen: for the instance induced by 7%, can compute
feasible solution S of links of cost

, . , 4N ;
3 7 2 K 2A 7 7
mln{lg wiz) + 2w, 20> wai + 30-1) > " wzf}
€T leC lel leC
for any v > 1

Theorem [Adjiashvili "17]

Choosing A = 3 4+ /5 and simple numerical optimization yields
that algorithm is (1.964 + ¢)-approximate for WTAP. For TAP this
can be strengthened to (5/3 + ¢).
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Improving Adjiashvili's Algorithm
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» Rounding Method 2 eliminates inlinks; what remains is an
edge-cover instance in disguise
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» Rounding Method 2 eliminates inlinks; what remains is an
edge-cover instance in disguise

» The 4/3 term in the approximation guarantee stems from the
integrality gap of the fractional edge-cover LP = TAP LP for
star-shaped instances

lez A-1) iz
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» Rounding Method 2 eliminates inlinks; what remains is an
edge-cover instance in disguise

» The 4/3 term in the approximation guarantee stems from the
integrality gap of the fractional edge-cover LP = TAP LP for
star-shaped instances

IeT (A-1) lec

» Edge-cover has of course tractable exact linear description
obtained by adding certain rank-1 Chvatal-Gomory cuts to the
standard LP.
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» Rounding Method 2 eliminates inlinks; what remains is an
edge-cover instance in disguise

» The 4/3 term in the approximation guarantee stems from the
integrality gap of the fractional edge-cover LP = TAP LP for
star-shaped instances

IeT (A-1) lec

» Edge-cover has of course tractable exact linear description
obtained by adding certain rank-1 Chvatal-Gomory cuts to the
standard LP.

» Improve the guarantee in (%) by strengthening (P1) through
CG cuts!
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Recap: Bundle LP formulation for WTAP:

min Z wy Ty (P1)
l

st. >, w>1 (e€E)
lecov(e)

Z wyz; > optg (B € B,)
l€ cov(B)

x>0
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» The inequality

eck leL ecl

Z)\xcov +Z“l$l>[z>‘] (%)

where
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» The inequality

Z)\xcov +Z,ulxl> ZA , (%)

eck leL ecl

where
» A€ {0,1/2}F and p € {0,1/2}%, and
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» The inequality
Z)\xcov +mel> ZA , (%)
) leL e€E

where
» A€ {0,1/2}F and p € {0,1/2}%, and

» the left-hand side coefficients are integral
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» The inequality

Z)\xcov +me>[2)ﬂ (%)

eck leL eckE

where
» A€ {0,1/2}F and p € {0,1/2}F, and

» the left-hand side coefficients are integral

is called a {0,1/2}-CG cut
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» The inequality

Z)\xcov +me>[2)ﬂ (%)

eck leL eckE

where
» A€ {0,1/2}F and p € {0,1/2}F, and

» the left-hand side coefficients are integral

is called a {0,1/2}-CG cut

» Such cuts are valid for the IP corresponding to P;.

Improving on Adjiashvili's Algorithm



» Constraints (%) have a nicer
graphical representation.
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» Constraints (%) have a nicer
graphical representation.

» Foraset S C V, let §(S) be the
edges in T with exactly one
endpoint in .S
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» Constraints (%) have a nicer
graphical representation.

» Foraset S C V, let §(S) be the
edges in T with exactly one
endpoint in S

» Let 7(59) be the multiset of links
that cover edges in §(9),
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» Constraints (%) have a nicer
graphical representation.

» Foraset S C V, let §(S) be the
edges in T with exactly one
endpoint in S

» Let 7(59) be the multiset of links
that cover edges in §(5), the
multiplicity of [ is

[[{e€d(S) : Il €covie)}|/2]
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» Constraints (%) have a nicer
graphical representation.

» Foraset S C V, let 6(S) be the
edges in T with exactly one
endpoint in S

» Let 7(59) be the multiset of links
that cover edges in §(5), the
multiplicity of [ is

[[{e€d(S) : Il €covie)}|/2]

» For S with odd |0(.5)| we rewrite
(%) as

z(m(5)) = (|6(5) +1)/2



min Z wy Ty (P2)
l

ot x(w(S))z% (5 C V,16(5) odd) (%)

Z wir; > optg (B € By)
le cov(B)

x>0
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min Zwm (P2)
l
st ao(n(S)) > % (SC V,|5(5) odd) (%)
Z wir; > optg (B € By)
l€Cov(B)
x>0

Theorem [Caprara, Fischetti '96]

Inequalities (x) can be separated efficiently, and hence the (P2)
can be solved efficiently as well for constant ~.
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» Obtain the odd-cut LP by dropping the bundle constraints
from (P2)

Improving on Adjiashvili's Algorithm



» Obtain the odd-cut LP by dropping the bundle constraints
from (P2)

Key-Theorem [FGKS’17]

The odd-cut LP is integral for WTAP instances with only up- and
cross-links.
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» Obtain the odd-cut LP by dropping the bundle constraints
from (P2)

Key-Theorem [FGKS’17]
The odd-cut LP is integral for WTAP instances with only up- and
cross-links.

Consequences:
» We can compute a solution S of cost no more than

2 Z wyx + Z Wy T

ez leC

for feasible solution z to the odd-cut LP
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» Obtain the odd-cut LP by dropping the bundle constraints
from (P2)

Key-Theorem [FGKS’17]
The odd-cut LP is integral for WTAP instances with only up- and
cross-links.

Consequences:
» We can compute a solution S of cost no more than

2 Z wyx + Z Wy T

ez leC

for feasible solution z to the odd-cut LP

» Replacing P by P, in Adjiashvili's algorithm, z° can be shown
to be feasible for odd cut LP of the instance induced by 7"
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» Define matrix M to be the

incidence matrix of a bidirected v -2 1 0
graph if 00 -1 -1
1 0 0 0
> IMyl < 2, 1.0 0 -1
i
for all j
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» Define matrix M to be the

incidence matrix of a bidirected v -2 1 0
graph if 00 -1 -1
1 0 0 0
> IMyl < 2, 1.0 0 -1
i
for all j

» Then B is a binet matrix if
B=R!5,

where M = [SR] is the incidence
matrix of a bidirected graph

» with full row rank, and

» R is a basis of M
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Theorem [Appa & Kotnyek '04,Edmonds & Johnson '70, '73]

For binet matrix B € Z™*™ b € Z™, the integer hull of
P={z:Bzx>b,z>0}

is described by the {0,1/2} CG cuts.
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Theorem [Appa & Kotnyek '04,Edmonds & Johnson '70, '73]
For binet matrix B € Z™*™ b € Z™, the integer hull of

P={z:Bzx>b,z>0}

is described by the {0,1/2} CG cuts.

As you expect: The incidence matrix A of standard TAP LP (P)
in instances with only up- and cross-links is a binet matrix!
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Theorem [Appa & Kotnyek '04,Edmonds & Johnson '70, '73]
For binet matrix B € Z™*™ b € Z™, the integer hull of

P={z:Bzx>b,z>0}

is described by the {0,1/2} CG cuts.

As you expect: The incidence matrix A of standard TAP LP (P)
in instances with only up- and cross-links is a binet matrix!

— odd-cut LP (Py) is integral in these cases
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Rounding Method 1

x feasible solution to (P2), can compute S with

c(S) < Z wix; + 2 Z w; T

leT leC

Rounding Method 2

x feasible solution to (P2), can compute S with
ZD)

c(S) < 2)\2 wyz) + Z wy ]
lez 3A-1) iz
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Rounding Method 1

z feasible solution to (P2), can compute S with

c(S) < Z wyxy + 2 Z W

leT leC

Rounding Method 2

x feasible solution to (P2), can compute S with

c(S) <2 Z wy Ly + Z w Ty

lel leC

Improving on Adjiashvili's Algorithm



Theorem [FGKS'17]

There is a (3/2 + €) approximation for WTAP in the bounded
weight setting.
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There is a (3/2 + €) approximation for WTAP in the bounded
weight setting.
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Theorem [FGKS’17]

There is a (3/2 + €) approximation for WTAP in the bounded
weight setting.

Open Questions:
» Make this work for arbitrary weights!

» Can we approximate TAP or WTAP to within 3/2 — ¢ for
some € > 07

» What is the integrality gap of the natural LP?

Thanks!
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