Improved Approximation for Tree Augmentation via Chvátal Gomory Cuts

Jochen Könemann

Joint work with S. Fiorini, M. Groß, and L. Sanità

Approximate Tree Augmentation

Input: graph G = (V, E) with non-negative edge-weights w_e for all edges $e \in E$

Input: graph G = (V, E) with non-negative edge-weights w_e for all edges $e \in E$

Various standard goals:

(i) Find a minimum-weight subgraph *H* with certain connectivity

Input: graph G = (V, E) with non-negative edge-weights w_e for all edges $e \in E$

Various standard goals:

(i) Find a minimum-weight subgraph *H* with certain connectivity

Steiner tree: find min-weight tree that spans a given set of special vertices

Input: graph G = (V, E) with non-negative edge-weights w_e for all edges $e \in E$

Various standard goals:

- (i) Find a minimum-weight subgraph *H* with certain connectivity
- (ii) Add a minimum-weight collection H of edges to a given graph to attain certain connectivity

Input: graph G = (V, E) with non-negative edge-weights w_e for all edges $e \in E$

Various standard goals:

- (i) Find a minimum-weight subgraph *H* with certain connectivity
- (ii) Add a minimum-weight collection H of edges to a given graph to attain certain connectivity

Connectivity Augmentation: find min-weight set H of edges such that G + H is 2-edge connected

Input: graph G = (V, E) with non-negative edge-weights w_e for all edges $e \in E$

Various standard goals:

- (i) Find a minimum-weight subgraph *H* with certain connectivity
- (ii) Add a minimum-weight collection H of edges to a given graph to attain certain connectivity

Connectivity Augmentation: find min-weight set H of edges such that G + H is 2-edge connected

Weighted Tree Augmentation (WTAP):

Input: Tree T = (V, E), links L ⊆ V × V, non-negative weight w_l for each l ∈ L

Weighted Tree Augmentation (WTAP):

- ▶ Input: Tree T = (V, E), links $L \subseteq V \times V$, non-negative weight w_l for each $l \in L$
- ► Goal: find minimum-weight collection H ⊆ L such that T + H is 2-edge connected

Weighted Tree Augmentation (WTAP):

- ▶ Input: Tree T = (V, E), links $L \subseteq V \times V$, non-negative weight w_l for each $l \in L$
- ► Goal: find minimum-weight collection H ⊆ L such that T + H is 2-edge connected

Weighted Tree Augmentation (WTAP):

- ▶ Input: Tree T = (V, E), links $L \subseteq V \times V$, non-negative weight w_l for each $l \in L$
- ► Goal: find minimum-weight collection H ⊆ L such that T + H is 2-edge connected

Unit-weight tree augmentation (TAP): special case where $w_l = 1$ for all links l

[Fredrickson and Jájá '81] WTAP and TAP are NP-hard even if the tree has constant diameter.

[Fredrickson and Jájá '81] WTAP and TAP are NP-hard even if the tree has constant diameter.

[Cheriyan, Jordán, Ravi '99] TAP is NP-hard even if the links form a cycle on the leaves of the tree.

For a given instance (T, w) of WTAP, we use opt for the weight of an optimum feasible solution.

For a given instance (T, w) of WTAP, we use opt for the weight of an optimum feasible solution.

An efficient algorithm \mathcal{A} is an *\alpha*-approximation for WTAP if it produces a link set of weight no more than α opt, for all instances.

For a given instance (T, w) of WTAP, we use opt for the weight of an optimum feasible solution.

An efficient algorithm \mathcal{A} is an *\alpha*-approximation for WTAP if it produces a link set of weight no more than α opt, for all instances.

[Kortsarz, Krauthgamer, Lee '04] TAP is APX-hard

For a given instance (T, w) of WTAP, we use opt for the weight of an optimum feasible solution.

An efficient algorithm \mathcal{A} is an *\alpha*-approximation for WTAP if it produces a link set of weight no more than α opt, for all instances.

[Kortsarz, Krauthgamer, Lee '04] TAP is APX-hard

 \rightarrow there is a constant α such that no $(\alpha - \epsilon)$ -approximation exists for any $\epsilon > 0$ unless P=NP.

 Formulate the given problem as mathematical program

- Formulate the given problem as mathematical program
- Relax it, so it can be solved efficiently

- Formulate the given problem as mathematical program
- Relax it, so it can be solved efficiently
- Solve the relaxation, and round the obtained solution

- Formulate the given problem as mathematical program
- Relax it, so it can be solved efficiently
- Solve the relaxation, and round the obtained solution
- Let opt_r be the optimum value of the relaxation, and show that the solution has cost at most α opt_r

The maximum ratio of opt and opt_r over all instances of the problem is called the integrality gap of the relaxation.

The maximum ratio of opt and opt_r over all instances of the problem is called the integrality gap of the relaxation.

Note: if the integrality gap of a relaxation is at least β then $\alpha \ge \beta$ for any α -approximation that uses this relaxation

For link *l* ∈ *L*, let *T*(*l*) be the unique path in *T* connecting the endpoints of *l*

- For link *l* ∈ *L*, let *T*(*l*) be the unique path in *T* connecting the endpoints of *l*
- For edge e ∈ E, let cov(e) be the set of links l ∈ L that cover e; i.e.,

$$\mathsf{cov}(e) = \{l \in L : e \in T(l)\}$$

- For link *l* ∈ *L*, let *T*(*l*) be the unique path in *T* connecting the endpoints of *l*
- For edge e ∈ E, let cov(e) be the set of links l ∈ L that cover e; i.e.,

$$\mathsf{cov}(e) = \{l \in L : e \in T(l)\}$$

Folklore

 $S\subseteq L \text{ is a feasible solution for TAP iff}\\ S\cap \mathrm{cov}(e)\neq \emptyset \text{, for all } e\in E$

- Introduce indicator variable x_l for each $l \in L$
- ► LP relaxation of IP:

min
$$\sum_{l} w_{l} x_{l}$$
 (P)
s.t. $\sum_{l \in \operatorname{cov}(e)} x_{l} \ge 1 \quad (e \in E)$
 $x \ge \emptyset$

- Introduce indicator variable x_l for each $l \in L$
- ► LP relaxation of IP:

min
$$\sum_{l} w_{l} x_{l}$$
 (P)
s.t. $\sum_{l \in \operatorname{cov}(e)} x_{l} \ge 1 \quad (e \in E)$
 $x \ge 0$

In what follows we let A be the coefficient matrix for the above LP, and thus (P) can be rewritten as

$$\min\{w^T x : Ax \ge \mathbb{1}, x \ge 0\}$$

• Pick an arbitrary fixed root $r \in V$

up-link

- \blacktriangleright Pick an arbitrary fixed root $r \in V$
- Three types of links: l = (u, v) is ...
 - an up-link if u is an ancestor of v in T,

- \blacktriangleright Pick an arbitrary fixed root $r \in V$
- Three types of links: l = (u, v) is ...
 - an up-link if u is an ancestor of v in T,
 - a cross-link if T(l) contains r, and

- \blacktriangleright Pick an arbitrary fixed root $r \in V$
- Three types of links: l = (u, v) is ...
 - an up-link if u is an ancestor of v in T,
 - a cross-link if T(l) contains r, and
 - ► an in-link otherwise

- Pick an arbitrary fixed root $r \in V$
- Three types of links: l = (u, v) is ...
 - an up-link if u is an ancestor of v in T,
 - a cross-link if T(l) contains r, and
 - ► an in-link otherwise

Folklore Fact

Coefficient matrix A of LP (P) is **network** matrix for up-link-only WTAP instances.

cross-link in-link up-link

- Pick an arbitrary fixed root $r \in V$
- Three types of links: l = (u, v) is ...
 - an up-link if u is an ancestor of v in T,
 - a cross-link if T(l) contains r, and
 - ► an in-link otherwise

Folklore Fact

Coefficient matrix A of LP (P) is **network** matrix for up-link-only WTAP instances.

 \rightarrow (P) is integral in "up-link only" instances.

A Simple 2-Approximation for WTAP

► Given an instance (T, w) of WTAP, pick an arbitrary root r ∈ V(T)

A Simple 2-Approximation for WTAP

- ► Given an instance (T, w) of WTAP, pick an arbitrary root r ∈ V(T)
- ► For a link l = (u, v) let the lca(u, v) be the lowest common ancestor of u and v in the r-rooted tree T

- ► Given an instance (T, w) of WTAP, pick an arbitrary root r ∈ V(T)
- ► For a link l = (u, v) let the lca(u, v) be the lowest common ancestor of u and v in the r-rooted tree T
- ► Obtain a new instance (T, w') by replacing each cross link l = (u, v) by two up-links (u, lca(u, v)) and (v, lca(u, v)) of the same cost

 The new instance is up-link only and hence (P) is integral

- The new instance is up-link only and hence (P) is integral
- ▶ Note: $opt_{T,w'} \leq 2 opt_{T,w}$

- The new instance is up-link only and hence (P) is integral
- ▶ Note: $\operatorname{opt}_{T,w'} \leq 2 \operatorname{opt}_{T,w}$
- Gives a 2-approximation for WTAP, and this is best known!

- The new instance is up-link only and hence (P) is integral
- ▶ Note: $\operatorname{opt}_{T,w'} \leq 2 \operatorname{opt}_{T,w}$
- Gives a 2-approximation for WTAP, and this is best known!
- ► Also shows that integrality gap of standard LP (P) is at most 2.

- The new instance is up-link only and hence (P) is integral
- ▶ Note: $\operatorname{opt}_{T,w'} \leq 2 \operatorname{opt}_{T,w}$
- Gives a 2-approximation for WTAP, and this is best known!
- ► Also shows that integrality gap of standard LP (P) is at most 2*.

It is sometimes convenient to assume that our WTAP instances are shadow complete:

$$l \in L \longrightarrow l' \in L,$$

whenever l^\prime spans a subset of $l^\prime {\rm s}$ edges of T

It is sometimes convenient to assume that our WTAP instances are shadow complete:

$$l \in L \longrightarrow l' \in L,$$

whenever l^\prime spans a subset of $l^\prime {\rm s}$ edges of T

Clearly: assumption is w.l.o.g.

► A WTAP instance (T, w) is star shaped if all links l ∈ L cover r for some (arbitrary) root node r ∈ V

- ► A WTAP instance (T, w) is star shaped if all links l ∈ L cover r for some (arbitrary) root node r ∈ V
- ► Note: S ⊆ L is feasible iff all leaf edges are covered

- ► A WTAP instance (T, w) is star shaped if all links l ∈ L cover r for some (arbitrary) root node r ∈ V
- ► Note: S ⊆ L is feasible iff all leaf edges are covered
- WTAP instance is edge-cover in disguise: pick a minimum-weight collection of links that covers all leaf vertices

► Edge-cover is polynomial-time solvable → Star shaped WTAP instances are polynomial-time solvable

- ► Edge-cover is polynomial-time solvable → Star shaped WTAP instances are polynomial-time solvable
- (P) for such instances is equivalent to the fractional edge-cover LP

min $c^T x$ $\sum \quad x_l \ge 1$ s.t. $l \in COV(e)$ (leaf edges e) $x \ge 0$

- ► Edge-cover is polynomial-time solvable → Star shaped WTAP instances are polynomial-time solvable
- (P) for such instances is equivalent to the fractional edge-cover LP
- Fractional edge-cover LP has integrality gap 4/3

- ► Edge-cover is polynomial-time solvable → Star shaped WTAP instances are polynomial-time solvable
- (P) for such instances is equivalent to the fractional edge-cover LP
- Fractional edge-cover LP has integrality gap 4/3
- There is an exact, tractable LP for edge-cover

 $c^T x$ min $\sum x_l \ge 1$ s.t. $l \in COV(e)$ (leaf edges e) $x \ge 0$

Recall: Tree Augmentation Formulation

- Introduce indicator variable x_l for each $l \in L$
- ► LP relaxation of IP:

min
$$\sum_{l} w_{l} x_{l}$$
 (P)
s.t. $\sum_{l \in \text{cov}(e)} x_{l} \ge 1 \quad (e \in E)$
 $x \ge 0$

► the figure shows tree T_k for k = 5 and unit weight links (dashed)

- ► the figure shows tree T_k for k = 5 and unit weight links (dashed)
- ► The edge-labels of the links give a solution x for (P) of value 2k/3 + 1 = 13/3

- ► the figure shows tree T_k for k = 5 and unit weight links (dashed)
- ► The edge-labels of the links give a solution x for (P) of value 2k/3 + 1 = 13/3
- ► The best integral solution has value k + 1 = 6. → the integrality gap of (P) is ≈ 3(k + 1)/2k and thus tends to 3/2 for large k

Theorem [Cheriyan, Karloff, Khandekar, K. '08] LP (P) has integrality gap at least 3/2. [Fredrickson & Jàjà '81] 2-apx of WTAP (there are several other ways of getting the same guarantee)

- [Fredrickson & Jàjà '81] 2-apx of WTAP (there are several other ways of getting the same guarantee)
- [Kortsarz & Nutov '16] Intricate combinatorial 3/2-apx for TAP (based upon [Even, Feldmann, Nutov, Kortsarz '01])

- ► [Fredrickson & Jàjà '81] 2-apx of WTAP (there are several other ways of getting the same guarantee)
- [Kortsarz & Nutov '16] Intricate combinatorial 3/2-apx for TAP (based upon [Even, Feldmann, Nutov, Kortsarz '01])
- ► [Cheriyan & Gao '15] Combinatorial (3/2 + ϵ)-apx for TAP based upon SDP lowerbound

- ► [Fredrickson & Jàjà '81] 2-apx of WTAP (there are several other ways of getting the same guarantee)
- [Kortsarz & Nutov '16] Intricate combinatorial 3/2-apx for TAP (based upon [Even, Feldmann, Nutov, Kortsarz '01])
- ► [Cheriyan & Gao '15] Combinatorial (3/2 + ϵ)-apx for TAP based upon SDP lowerbound
- ► [Adjiashvili '17] LP-based 1.96-approximation for WTAP where link weights are in [1, M] for a fixed M

- ► [Fredrickson & Jàjà '81] 2-apx of WTAP (there are several other ways of getting the same guarantee)
- [Kortsarz & Nutov '16] Intricate combinatorial 3/2-apx for TAP (based upon [Even, Feldmann, Nutov, Kortsarz '01])
- ► [Cheriyan & Gao '15] Combinatorial (3/2 + ϵ)-apx for TAP based upon SDP lowerbound
- ► [Adjiashvili '17] LP-based 1.96-approximation for WTAP where link weights are in [1, M] for a fixed M Also: 5/3 + e in TAP special case

- ► [Fredrickson & Jàjà '81] 2-apx of WTAP (there are several other ways of getting the same guarantee)
- [Kortsarz & Nutov '16] Intricate combinatorial 3/2-apx for TAP (based upon [Even, Feldmann, Nutov, Kortsarz '01])
- ► [Cheriyan & Gao '15] Combinatorial (3/2 + ϵ)-apx for TAP based upon SDP lowerbound
- ► [Adjiashvili '17] LP-based 1.96-approximation for WTAP where link weights are in [1, M] for a fixed M Also: 5/3 + e in TAP special case

Comment: Adjiashvili's results are with respect to a stronger TAP LP

There is an LP-relative $(3/2 + \epsilon)$ approximation for WTAP for any small $\epsilon > 0$ in the bounded link cost setting.

We follow Adjiashvili's framework

- We follow Adjiashvili's framework
- Add certain subclass of rank-1 Chvátal-Gomory cutting planes to Adjiashvili's LP (maintaining tractability)

- ► We follow Adjiashvili's framework
- Add certain subclass of rank-1 Chvátal-Gomory cutting planes to Adjiashvili's LP (maintaining tractability)
- ► Strongest LP-relative results for TAP/WTAP to date

- ► We follow Adjiashvili's framework
- Add certain subclass of rank-1 Chvátal-Gomory cutting planes to Adjiashvili's LP (maintaining tractability)
- ► Strongest LP-relative results for TAP/WTAP to date
- ► (Fairly) simple algorithms and analysis

Adjiashvili's Framework

Tree T = (V, E), and constant γ (later chosen to be O(M/ε²) for small ε > 0)

2-bundle

- Tree T = (V, E), and constant γ (later chosen to be O(M/ε²) for small ε > 0)
- S ⊆ E is a γ-bundle if it can be covered by at most γ paths in T

2-bundle

- ► Tree T = (V, E), and constant γ (later chosen to be $O(M/\epsilon^2)$ for small $\epsilon > 0$)
- S ⊆ E is a γ-bundle if it can be covered by at most γ paths in T
- Easy observations:
 - (i) γ-bundles are forests with at most 2γ leaves, but their number of edges need not be constant

2-bundle

- ► Tree T = (V, E), and constant γ (later chosen to be $O(M/\epsilon^2)$ for small $\epsilon > 0$)
- S ⊆ E is a γ-bundle if it can be covered by at most γ paths in T
- Easy observations:
 - (i) γ-bundles are forests with at most 2γ leaves, but their number of edges need not be constant
 - (ii) there are no more than $\binom{|V|}{2}^{\gamma}$ γ -bundles

2-bundle
Strengthening the LP

- ► Tree T = (V, E), and constant γ (later chosen to be $O(M/\epsilon^2)$ for small $\epsilon > 0$)
- S ⊆ E is a γ-bundle if it can be covered by at most γ paths in T
- Easy observations:
 - (i) γ-bundles are forests with at most 2γ leaves, but their number of edges need not be constant
 - (ii) there are no more than $\binom{|V|}{2}^{\gamma}$ γ -bundles

 opt_B: optimum weight of a WTAP solution for γ-bundle B

Theorem [Adjiashvili '17]

Let B be a forest with at most k leaves. \rightarrow can compute opt_B in time $|\,V|^{k^{O(1)}}.$

2-bundle

Theorem [Adjiashvili '17]

Let B be a forest with at most k leaves. \rightarrow can compute opt_B in time $|V|^{k^{O(1)}}$.

Implies: can compute ${\rm opt}_B$ in polynomial time for $\gamma\text{-bundles }B$ and fixed γ

2-bundle

Theorem [Adjiashvili '17]

Let B be a forest with at most k leaves. \rightarrow can compute opt_B in time $|V|^{k^{O(1)}}$.

Implies: can compute ${\rm opt}_B$ in polynomial time for $\gamma\text{-bundles }B$ and fixed γ

Strengthen (P) by adding constraints:

$$\sum_{l \, \in \, \operatorname{cov}(B)} w_l x_l \geq \operatorname{opt}_B \ (B \in B_\gamma)$$

2-bundle

 B_{γ} : set of γ -bundles

Strengthening the LP

$$\begin{array}{ll} \min & \sum_{l} w_{l} x_{l} & (\mathsf{P}_{1}) \\ \text{s.t.} & \sum_{l \in \mathsf{COV}(e)} x_{l} \geq 1 & (e \in E) \\ & \sum_{l \in \mathsf{COV}(B)} w_{l} x_{l} \geq \mathsf{opt}_{B} & (B \in B_{\gamma}) \\ & x \geq 0 \end{array}$$

Consequence from earlier discussion: can solve (P₁) in polynomial time for fixed γ .

• Goal: round solution x to P_1 .

- Goal: round solution x to P_1 .
- ► Facilitate this by decomposing ...
 - (i) T into subtrees T^1, \ldots, T^q , and
 - (ii) x into x^1, \ldots, x^q

- Goal: round solution x to P_1 .
- ► Facilitate this by decomposing ...
 - (i) T into subtrees T^1, \ldots, T^q , and
 - (ii) x into x^1, \ldots, x^q
 - such that \ldots
 - (i) x^i is feasible for P_1 in instance induced by T^i ,

- Goal: round solution x to P_1 .
- ► Facilitate this by decomposing ...
 - (i) T into subtrees T^1, \ldots, T^q , and
 - (ii) x into x^1, \ldots, x^q
 - such that ...
 - (i) x^i is feasible for P₁ in instance induced by T^i ,
 - (ii) $\sum_{i=1}^q w^T x^i \leq (1+\epsilon) w^T x$ for small $\epsilon > 0,$ and,

- Goal: round solution x to P_1 .
- ► Facilitate this by decomposing ...
 - (i) T into subtrees T^1, \ldots, T^q , and
 - (ii) x into x^1, \ldots, x^q
 - such that ...
 - (i) x^i is feasible for P₁ in instance induced by T^i ,
 - (ii) $\sum_{i=1}^q w^T x^i \leq (1+\epsilon) w^T x$ for small $\epsilon > 0,$ and,
 - (iii) structure of T^i is easier

• Let x be a solution to P_1

- Let x be a solution to P_1
- ► May assume that all edges e of T are lightly covered: x(cov(e)) = O(1/ε)

- Let x be a solution to P_1
- ► May assume that all edges e of T are lightly covered: x(cov(e)) = O(1/ε)
- Repeatedly pick edge $u^1u^2 \in T$ whose removal creates subtrees T^1 and T^2

- ▶ Let *x* be a solution to P₁
- ► May assume that all edges e of T are lightly covered: x(cov(e)) = O(1/ε)
- Repeatedly pick edge $u^1u^2 \in T$ whose removal creates subtrees T^1 and T^2
- Split x into x¹ and x² feasible for P₁ in induced subinstances, by cloning links that cover u¹u²

- Let x be a solution to P_1
- ► May assume that all edges e of T are lightly covered: x(cov(e)) = O(1/ε)
- Repeatedly pick edge $u^1u^2 \in T$ whose removal creates subtrees T^1 and T^2
- Split x into x¹ and x² feasible for P₁ in induced subinstances, by cloning links that cover u¹u²

► Edge $u^1 u^2$ is lightly covered: $x(\operatorname{cov}(u^1 u^2)) = O(1/\epsilon)$

 \rightarrow cost of links covering this edge is $O(M/\epsilon)$

► Edge u¹u² is lightly covered: x(cov(u¹u²)) = O(1/ε)

 \rightarrow cost of links covering this edge is $O(M/\epsilon)$

• Pick α -thin $u^1 u^2$: links entirely in subtree T^i have x-weight at least $\alpha \approx M/\epsilon^2$

► Edge $u^1 u^2$ is lightly covered: $x(\operatorname{cov}(u^1 u^2)) = O(1/\epsilon)$

 \rightarrow cost of links covering this edge is $O(M/\epsilon)$

- Pick α -thin $u^1 u^2$: links entirely in subtree T^i have x-weight at least $\alpha \approx M/\epsilon^2$
- Can now charge weight increase due to x-splitting to x-weight of links in the decomposition parts

Repeated decomposition creates

- ▶ subtrees T^1, T^2, \ldots, T^q , and
- independent solutions x^1, x^2, \ldots, x^q for (P_1)

► Round feasible solution xⁱ for each 1 ≤ i ≤ k independently

- ► Round feasible solution xⁱ for each 1 ≤ i ≤ k independently
- Return the union of solutions for sub-instances

Each (T^i, x^i) will turn out to be β -simple:

► There is a center vertex v ∈ V(Tⁱ) whose removal breaks Tⁱ into subtrees K₁,..., K_q

Each (T^i, x^i) will turn out to be β -simple:

- ► There is a center vertex v ∈ V(Tⁱ) whose removal breaks Tⁱ into subtrees K₁,..., K_q
- Each K_j has a at most β leaves, and

Each (T^i, x^i) will turn out to be β -simple:

- ► There is a center vertex v ∈ V(Tⁱ) whose removal breaks Tⁱ into subtrees K₁,..., K_q
- Each K_j has a at most β leaves, and
- The fractional xⁱ-weight of links inside K_j is at most β

Each (T^i, x^i) will turn out to be β -simple:

- ► There is a center vertex v ∈ V(Tⁱ) whose removal breaks Tⁱ into subtrees K₁,..., K_q
- Each K_j has a at most β leaves, and
- The fractional xⁱ-weight of links inside K_j is at most β
- Will choose $lpha, eta pprox O(M/\epsilon^2).$

► Define supp(xⁱ) as the set of links with positive xⁱ-value

- ► Define supp(xⁱ) as the set of links with positive xⁱ-value
- Each $uv \in \operatorname{supp}(x^i)$ is ...

- Define supp(xⁱ) as the set of links with positive xⁱ-value
- Each $uv \in \operatorname{supp}(x^i)$ is ...
 - an in-link if u and v lie in K_i for some $j \to \mathcal{I}$

- ► Define supp(xⁱ) as the set of links with positive xⁱ-value
- Each $uv \in \operatorname{supp}(x^i)$ is ...
 - an in-link if u and v lie in K_j for some $j \to \mathcal{I}$
 - a cross-link otherwise $\rightarrow C$

- ► Define supp(xⁱ) as the set of links with positive xⁱ-value
- Each $uv \in \operatorname{supp}(x^i)$ is ...
 - an in-link if u and v lie in K_j for some $j \to \mathcal{I}$
 - a cross-link otherwise $\rightarrow C$
- Will use the better of two rounding methods

Theorem [Adjiashvili '17]

There is an algorithm that computes a set S of links covering T^i such that

$$c(S) \le \sum_{l \in \mathcal{I}} w_l x_l^i + 2 \sum_{l \in \mathcal{C}} w_l x_l^i$$

Theorem [Adjiashvili '17]

There is an algorithm that computes a set S of links covering T^i such that

$$c(S) \le \sum_{l \in \mathcal{I}} w_l x_l^i + 2 \sum_{l \in \mathcal{C}} w_l x_l^i$$

Sketch:

 Create new solution y from xⁱ by splitting each cross-link at center v;

Theorem [Adjiashvili '17]

There is an algorithm that computes a set S of links covering T^i such that

$$c(S) \le \sum_{l \in \mathcal{I}} w_l x_l^i + 2 \sum_{l \in \mathcal{C}} w_l x_l^i$$

Sketch:

 Create new solution y from xⁱ by splitting each cross-link at center v; easy to see:

$$w^T y \leq \sum_{l \in \mathcal{I}} w_l x_l^i + 2 \sum_{l \in \mathcal{C}} w_l x_l^i$$

• Add center v to instance $\rightarrow \overline{K}^i$

- Add center v to instance $\rightarrow \overline{K}^i$
- ► Note that y projected onto links covering Kⁱ is a feasible solution for this sub-instance

- Add center v to instance $\rightarrow \overline{K}^i$
- ► Note that y projected onto links covering Kⁱ is a feasible solution for this sub-instance
- ► Can show: y satisfies bundle constraints, and that Kⁱ is a bundle

Rounding Method 1 – Inlink-Heavy Case

- Add center v to instance $\rightarrow \overline{K}^i$
- ► Note that y projected onto links covering Kⁱ is a feasible solution for this sub-instance
- ► Can show: y satisfies bundle constraints, and that Kⁱ is a bundle
- ► Implies: fractional cost of y is as large as optimum solution for Kⁱ (which can be computed efficiently).

Theorem [Adjiashvili '17]

There is an algorithm that computes a set S of links covering T^i such that

$$c(S) \le 2\lambda \sum_{l \in \mathcal{I}} w_l x_l^i + \frac{4\lambda}{3(\lambda - 1)} \sum_{l \in \mathcal{C}} w_l x_l^i$$

for any constant $\lambda > 1$.

Theorem [Adjiashvili '17]

There is an algorithm that computes a set S of links covering T^i such that

$$c(S) \le 2\lambda \sum_{l \in \mathcal{I}} w_l x_l^i + \frac{4\lambda}{3(\lambda - 1)} \sum_{l \in \mathcal{C}} w_l x_l^i$$

for any constant $\lambda > 1$.

• Let E_{λ} be all edges $e \in T^i$ that have $1/\lambda$ inlink coverage:

$$\sum_{l \in \mathcal{I} \cap \mathsf{COV}(e)} x_l^i \geq \frac{1}{\lambda}$$

Theorem [Adjiashvili '17]

There is an algorithm that computes a set S of links covering T^i such that

$$c(S) \le 2\lambda \sum_{l \in \mathcal{I}} w_l x_l^i + \frac{4\lambda}{3(\lambda - 1)} \sum_{l \in \mathcal{C}} w_l x_l^i$$

for any constant $\lambda > 1$.

• Let E_{λ} be all edges $e \in T^i$ that have $1/\lambda$ inlink coverage:

$$\sum_{l \in \mathcal{I} \cap \mathsf{COV}(e)} x_l^i \ge \frac{1}{\lambda}$$

► Can cover edges in E_{λ} at cost no larger than $2\lambda \sum_{l \in \mathcal{I}} w_l x_l^i$

• Contract all edges in $E_{\lambda} \rightarrow \bar{T}^i$, and delete all inlinks

- Contract all edges in $E_{\lambda} \rightarrow \overline{T}^i$, and delete all inlinks
- Observe:

- Contract all edges in $E_{\lambda} \rightarrow \bar{T}^i$, and delete all inlinks
- ► Observe:
 - (i) The resulting WTAP instance is star-shaped, and

- Contract all edges in $E_{\lambda} \rightarrow \bar{T}^i$, and delete all inlinks
- Observe:
 - (i) The resulting WTAP instance is star-shaped, and
 - (ii) $z = \lambda/(\lambda 1) \cdot x^i$ is now feasible for original TAP LP (P)

- Contract all edges in $E_{\lambda} \rightarrow$ \bar{T}^i , and delete all inlinks
- Observe:
 - (i) The resulting WTAP instance is star-shaped, and
 - (ii) $z = \lambda/(\lambda 1) \cdot x^i$ is now feasible for original TAP LP (P)
- Hence: there is a solution $S \subseteq L$ for this instance of cost no more than

$$\frac{4\lambda}{3(\lambda-1)}\sum_{l\in\mathcal{C}}w_l x_l^i$$

Adjiashvili's Method: Wrapping Up

► Have seen: for the instance induced by Tⁱ, can compute feasible solution S of links of cost

$$\min\{\sum_{l\in\mathcal{I}} w_l x_l^i + 2\sum_{l\in\mathcal{C}} w_l x_l^i, 2\lambda \sum_{l\in\mathcal{I}} w_l x_l^i + \frac{4\lambda}{3(\lambda-1)} \sum_{l\in\mathcal{C}} w_l x_l^i\}$$
 for any $\gamma > 1$

Adjiashvili's Method: Wrapping Up

► Have seen: for the instance induced by Tⁱ, can compute feasible solution S of links of cost

$$\min\{\sum_{l\in\mathcal{I}}w_lx_l^i+2\sum_{l\in\mathcal{C}}w_lx_l^i,2\lambda\sum_{l\in\mathcal{I}}w_lx_l^i+\frac{4\lambda}{3(\lambda-1)}\sum_{l\in\mathcal{C}}w_lx_l^i\}$$
 for any $\gamma>1$

Theorem [Adjiashvili '17]

Choosing $\lambda = 3 + \sqrt{5}$ and simple numerical optimization yields that algorithm is $(1.964 + \epsilon)$ -approximate for WTAP. For TAP this can be strengthened to $(5/3 + \epsilon)$.

Improving Adjiashvili's Algorithm

 Rounding Method 2 eliminates inlinks; what remains is an edge-cover instance in disguise

- Rounding Method 2 eliminates inlinks; what remains is an edge-cover instance in disguise
- ► The 4/3 term in the approximation guarantee stems from the integrality gap of the fractional edge-cover LP = TAP LP for star-shaped instances

$$c(S) \le 2\lambda \sum_{l \in \mathcal{I}} w_l x_l^i + \frac{4\lambda}{3(\lambda - 1)} \sum_{l \in \mathcal{C}} w_l x_l^i \qquad (\star)$$

- Rounding Method 2 eliminates inlinks; what remains is an edge-cover instance in disguise
- ► The 4/3 term in the approximation guarantee stems from the integrality gap of the fractional edge-cover LP = TAP LP for star-shaped instances

$$c(S) \le 2\lambda \sum_{l \in \mathcal{I}} w_l x_l^i + \frac{4\lambda}{3(\lambda - 1)} \sum_{l \in \mathcal{C}} w_l x_l^i \qquad (\star)$$

Edge-cover has of course tractable exact linear description

- Rounding Method 2 eliminates inlinks; what remains is an edge-cover instance in disguise
- ► The 4/3 term in the approximation guarantee stems from the integrality gap of the fractional edge-cover LP = TAP LP for star-shaped instances

$$c(S) \le 2\lambda \sum_{l \in \mathcal{I}} w_l x_l^i + \frac{4\lambda}{3(\lambda - 1)} \sum_{l \in \mathcal{C}} w_l x_l^i \qquad (\star)$$

 Edge-cover has of course tractable exact linear description ... obtained by adding certain rank-1 Chvátal-Gomory cuts to the standard LP.

- Rounding Method 2 eliminates inlinks; what remains is an edge-cover instance in disguise
- ► The 4/3 term in the approximation guarantee stems from the integrality gap of the fractional edge-cover LP = TAP LP for star-shaped instances

$$c(S) \le 2\lambda \sum_{l \in \mathcal{I}} w_l x_l^i + \frac{4\lambda}{3(\lambda - 1)} \sum_{l \in \mathcal{C}} w_l x_l^i \qquad (\star)$$

- Edge-cover has of course tractable exact linear description ... obtained by adding certain rank-1 Chvátal-Gomory cuts to the standard LP.
- Improve the guarantee in (*) by strengthening (P1) through CG cuts!

Recap: Bundle LP formulation for WTAP:

$$\begin{array}{ll} \min & \sum_{l} w_{l} x_{l} & (\mathsf{P}_{1}) \\ \text{s.t.} & \sum_{l \in \mathsf{COV}(e)} x_{l} \geq 1 \quad (e \in E) \\ & \sum_{l \in \mathsf{COV}(B)} w_{l} x_{l} \geq \mathsf{opt}_{B} \quad (B \in B_{\gamma}) \\ & x \geq 0 \end{array}$$

► The inequality

$$\sum_{e \in E} \lambda_e x(\operatorname{cov}(e)) + \sum_{l \in L} \mu_l x_l \ge \left[\sum_{e \in E} \lambda_e \right], \qquad (\star)$$

where

► The inequality

$$\sum_{e \in E} \lambda_e x(\operatorname{cov}(e)) + \sum_{l \in L} \mu_l x_l \ge \left[\sum_{e \in E} \lambda_e \right], \qquad (\star)$$

where

•
$$\lambda \in \{0, 1/2\}^E$$
 and $\mu \in \{0, 1/2\}^L$, and

► The inequality

$$\sum_{e \in E} \lambda_e x(\operatorname{cov}(e)) + \sum_{l \in L} \mu_l x_l \ge \left[\sum_{e \in E} \lambda_e \right], \qquad (\star)$$

- $\lambda \in \{0, 1/2\}^E$ and $\mu \in \{0, 1/2\}^L$, and
- the left-hand side coefficients are integral

► The inequality

$$\sum_{e \in E} \lambda_e x(\operatorname{cov}(e)) + \sum_{l \in L} \mu_l x_l \ge \left[\sum_{e \in E} \lambda_e \right], \qquad (\star)$$

where

•
$$\lambda \in \{0, 1/2\}^E$$
 and $\mu \in \{0, 1/2\}^L$, and

• the left-hand side coefficients are integral is called a $\{0, 1/2\}$ -CG cut

► The inequality

$$\sum_{e \in E} \lambda_e x(\operatorname{cov}(e)) + \sum_{l \in L} \mu_l x_l \ge \left[\sum_{e \in E} \lambda_e \right], \qquad (\star)$$

where

•
$$\lambda \in \{0, 1/2\}^E$$
 and $\mu \in \{0, 1/2\}^L$, and

 \blacktriangleright the left-hand side coefficients are integral is called a $\{0,1/2\}\text{-}\mathsf{CG}\ \mathsf{cut}$

► Such cuts are valid for the IP corresponding to P₁.

 Constraints (*) have a nicer graphical representation.

- Constraints (*) have a nicer graphical representation.
- For a set S ⊆ V, let δ(S) be the edges in T with exactly one endpoint in S

- Constraints (*) have a nicer graphical representation.
- For a set S ⊆ V, let δ(S) be the edges in T with exactly one endpoint in S
- Let π(S) be the multiset of links that cover edges in δ(S),

- Constraints (*) have a nicer graphical representation.
- For a set S ⊆ V, let δ(S) be the edges in T with exactly one endpoint in S
- Let π(S) be the multiset of links that cover edges in δ(S), the multiplicity of l is

$$\lceil |\{e \in \delta(S) \ : \ l \in \mathsf{cov}(e)\}|/2 \rceil$$

- Constraints (*) have a nicer graphical representation.
- For a set S ⊆ V, let δ(S) be the edges in T with exactly one endpoint in S
- Let π(S) be the multiset of links that cover edges in δ(S), the multiplicity of l is

$$\lceil |\{e \in \delta(S) \ : \ l \in \mathsf{cov}(e)\}|/2 \rceil$$

For S with odd |δ(S)| we rewrite (★) as

$$x(\pi(S)) \ge (|\delta(S)| + 1)/2$$

Odd Cut Bundle LP

$$\begin{array}{ll} \min & \sum_{l} w_{l} x_{l} & (\mathsf{P}_{2}) \\ \text{s.t.} & x(\pi(S)) \geq \frac{|\delta(S)| + 1}{2} & (S \subseteq V, |\delta(S)| \text{ odd}) & (\star) \\ & \sum_{l \in \mathsf{COV}(B)} w_{l} x_{l} \geq \mathsf{opt}_{B} & (B \in B_{\gamma}) \\ & x \geq 0 \end{array}$$

Odd Cut Bundle LP

$$\begin{array}{ll} \min & \sum_{l} w_{l} x_{l} & (\mathsf{P}_{2}) \\ \text{s.t.} & x(\pi(S)) \geq \frac{|\delta(S)| + 1}{2} & (S \subseteq V, |\delta(S)| \text{ odd}) & (\star) \\ & \sum_{l \in \mathsf{cov}(B)} w_{l} x_{l} \geq \mathsf{opt}_{B} & (B \in B_{\gamma}) \\ & x \geq 0 \end{array}$$

Theorem [Caprara, Fischetti '96]

Inequalities (*) can be separated efficiently, and hence the (P₂) can be solved efficiently as well for constant γ .

 Obtain the odd-cut LP by dropping the bundle constraints from (P₂)

 Obtain the odd-cut LP by dropping the bundle constraints from (P₂)

Key-Theorem [FGKS'17]

The odd-cut LP is integral for WTAP instances with only up- and cross-links.

➤ Obtain the odd-cut LP by dropping the bundle constraints from (P₂)

Key-Theorem [FGKS'17]

The odd-cut LP is integral for WTAP instances with only up- and cross-links.

Consequences:

 \blacktriangleright We can compute a solution S of cost no more than

$$2\sum_{l\in\mathcal{I}}w_lx_l + \sum_{l\in\mathcal{C}}w_lx_l$$

for feasible solution \boldsymbol{x} to the odd-cut LP

➤ Obtain the odd-cut LP by dropping the bundle constraints from (P₂)

Key-Theorem [FGKS'17]

The odd-cut LP is integral for WTAP instances with only up- and cross-links.

Consequences:

 \blacktriangleright We can compute a solution S of cost no more than

$$2\sum_{l\in\mathcal{I}}w_lx_l+\sum_{l\in\mathcal{C}}w_lx_l$$

for feasible solution \boldsymbol{x} to the odd-cut LP

► Replacing P₁ by P₂ in Adjiashvili's algorithm, xⁱ can be shown to be feasible for odd cut LP of the instance induced by Tⁱ

Proving the KeyTheorem

 Define matrix M to be the incidence matrix of a bidirected graph if

$$\sum_{i} |M_{ij}| \le 2,$$

$$\begin{bmatrix} 0 & -2 & 1 & 0 \\ 0 & 0 & -1 & -1 \\ 1 & 0 & 0 & 0 \\ -1 & 0 & 0 & -1 \end{bmatrix}$$

for all \boldsymbol{j}

Proving the KeyTheorem

 Define matrix M to be the incidence matrix of a bidirected graph if

$$\sum_{i} |M_{ij}| \le 2,$$

$$\begin{bmatrix} 0 & -2 & 1 & 0 \\ 0 & 0 & -1 & -1 \\ 1 & 0 & 0 & 0 \\ -1 & 0 & 0 & -1 \end{bmatrix}$$

for all j

► Then *B* is a binet matrix if

$$B = R^{-1}S,$$

where M = [SR] is the incidence matrix of a bidirected graph

- with full row rank, and
- $\blacktriangleright \ R$ is a basis of M
Theorem [Appa & Kotnyek '04,Edmonds & Johnson '70, '73] For binet matrix $B \in \mathbb{Z}^{m \times n}$, $b \in \mathbb{Z}^m$, the integer hull of $P = \{x : Bx \ge b, x \ge 0\}$

is described by the $\{0,1/2\}$ CG cuts.

Theorem [Appa & Kotnyek '04,Edmonds & Johnson '70, '73] For binet matrix $B \in \mathbb{Z}^{m \times n}$, $b \in \mathbb{Z}^m$, the integer hull of $P = \{x : Bx \ge b, x \ge 0\}$

is described by the $\{0, 1/2\}$ CG cuts.

As you expect: The incidence matrix A of standard TAP LP (P) in instances with only up- and cross-links is a binet matrix!

Theorem [Appa & Kotnyek '04,Edmonds & Johnson '70, '73] For binet matrix $B \in \mathbb{Z}^{m \times n}$, $b \in \mathbb{Z}^m$, the integer hull of $P = \{x : Bx \ge b, x \ge 0\}$

is described by the $\{0,1/2\}$ CG cuts.

As you expect: The incidence matrix A of standard TAP LP (P) in instances with only up- and cross-links is a binet matrix!

 \longrightarrow odd-cut LP (P₁) is integral in these cases

Rounding Method 1

x feasible solution to (P_2) , can compute S with

$$c(S) \le \sum_{l \in \mathcal{I}} w_l x_l + 2 \sum_{l \in \mathcal{C}} w_l x_l$$

Rounding Method 2

x feasible solution to (P_2) , can compute S with

$$c(S) \le 2\lambda \sum_{l \in \mathcal{I}} w_l x_l^i + \frac{4\lambda}{3(\lambda - 1)} \sum_{l \in \mathcal{C}} w_l x_l^i$$

Rounding Method 1

x feasible solution to (P_2) , can compute S with

$$c(S) \le \sum_{l \in \mathcal{I}} w_l x_l + 2 \sum_{l \in \mathcal{C}} w_l x_l$$

Rounding Method 2

x feasible solution to (P_2) , can compute S with

$$c(S) \le 2\sum_{l \in \mathcal{I}} w_l x_l + \sum_{l \in \mathcal{C}} w_l x_l$$

There is a $(3/2+\epsilon)$ approximation for WTAP in the bounded weight setting.

There is a $(3/2+\epsilon)$ approximation for WTAP in the bounded weight setting.

Open Questions:

Make this work for arbitrary weights!

There is a $(3/2+\epsilon)$ approximation for WTAP in the bounded weight setting.

Open Questions:

- Make this work for arbitrary weights!
- ► Can we approximate TAP or WTAP to within 3/2 ε for some ε > 0?

There is a $(3/2+\epsilon)$ approximation for WTAP in the bounded weight setting.

Open Questions:

- Make this work for arbitrary weights!
- ► Can we approximate TAP or WTAP to within 3/2 e for some e > 0?
- What is the integrality gap of the natural LP?

Wrapping Up & Final Words

Theorem [FGKS'17]

There is a $(3/2+\epsilon)$ approximation for WTAP in the bounded weight setting.

Open Questions:

- Make this work for arbitrary weights!
- ► Can we approximate TAP or WTAP to within 3/2 e for some e > 0?
- ► What is the integrality gap of the natural LP?

Thanks!