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Motivation – Network Design

Input: graph G = (V ,E) with
non-negative edge-weights we for
all edges e ∈ E

1

1
2

33

2
1

4

1

2

Approximate Tree Augmentation Introduction



Motivation – Network Design

Input: graph G = (V ,E) with
non-negative edge-weights we for
all edges e ∈ E

Various standard goals:
(i) Find a minimum-weight

subgraph H with certain
connectivity

(ii) Add a minimum-weight
collection H of edges to a
given graph to attain
certain connectivity

1

1
2

33

2
1

4

1

2

Approximate Tree Augmentation Introduction



Motivation – Network Design

Input: graph G = (V ,E) with
non-negative edge-weights we for
all edges e ∈ E

Various standard goals:
(i) Find a minimum-weight

subgraph H with certain
connectivity

(ii) Add a minimum-weight
collection H of edges to a
given graph to attain
certain connectivity

1

1
2

33

2
1

4

1

2

Steiner tree: find min-weight tree
that spans a given set of special
vertices
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Connectivity Augmentation: find
min-weight set H of edges such
that G + H is 2-edge connected
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Today’s Focus: Tree Augmentation

Weighted Tree Augmentation (WTAP):

I Input: Tree T = (V ,E),
links L ⊆ V ×V ,
non-negative weight wl for
each l ∈ L

I Goal: find minimum-weight
collection H ⊆ L such that
T + H is 2-edge connected
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Today’s Focus: Tree Augmentation

Weighted Tree Augmentation (WTAP):

I Input: Tree T = (V ,E),
links L ⊆ V ×V ,
non-negative weight wl for
each l ∈ L

I Goal: find minimum-weight
collection H ⊆ L such that
T + H is 2-edge connected

Unit-weight tree augmentation
(TAP): special case where wl = 1
for all links l
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TAP is Hard

[Fredrickson and Jájá ’81] WTAP
and TAP are NP-hard even if the
tree has constant diameter.
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TAP is Hard

[Fredrickson and Jájá ’81] WTAP
and TAP are NP-hard even if the
tree has constant diameter.

[Cheriyan, Jordán, Ravi ’99] TAP
is NP-hard even if the links form
a cycle on the leaves of the tree.
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Approximation Algorithms

For a given instance (T ,w) of WTAP,
we use opt for the weight of an
optimum feasible solution.
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Approximation Algorithms

For a given instance (T ,w) of WTAP,
we use opt for the weight of an
optimum feasible solution.

An efficient algorithm A is an
α-approximation for WTAP if it
produces a link set of weight no more
than α opt, for all instances.
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Approximation Algorithms

For a given instance (T ,w) of WTAP,
we use opt for the weight of an
optimum feasible solution.

An efficient algorithm A is an
α-approximation for WTAP if it
produces a link set of weight no more
than α opt, for all instances.

[Kortsarz, Krauthgamer, Lee ’04] TAP
is APX-hard
−→ there is a constant α such that no
(α− ε)-approximation exists for any
ε > 0 unless P=NP.

opt

apx

factor ↵
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Approximation Algorithms via LP

Popular approach:
I Formulate the given problem as

mathematical program

I Relax it, so it can be solved
efficiently

I Solve the relaxation, and round the
obtained solution

I Let optr be the optimum value of
the relaxation, and show that the
solution has cost at most α optr

opt

apx

factor ↵
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Approximation Algorithms via LP

Popular approach:
I Formulate the given problem as

mathematical program
I Relax it, so it can be solved

efficiently
I Solve the relaxation, and round the

obtained solution
I Let optr be the optimum value of

the relaxation, and show that the
solution has cost at most α optr

opt

apx

factor ↵

optr
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Approximation Algorithms via LP

The maximum ratio of opt and optr
over all instances of the problem is
called the integrality gap of the
relaxation.

opt
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Approximation Algorithms via LP

The maximum ratio of opt and optr
over all instances of the problem is
called the integrality gap of the
relaxation.

Note: if the integrality gap of a
relaxation is at least β then α ≥ β for
any α-approximation that uses this
relaxation

opt

apx

optr

factor � �
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An IP for Tree Augmentation

I For link l ∈ L, let T (l) be the
unique path in T connecting the
endpoints of l

I For edge e ∈ E , let cov(e) be the
set of links l ∈ L that cover e; i.e.,

cov(e) = {l ∈ L : e ∈ T (l)}

1
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An IP for Tree Augmentation

I For link l ∈ L, let T (l) be the
unique path in T connecting the
endpoints of l

I For edge e ∈ E , let cov(e) be the
set of links l ∈ L that cover e; i.e.,

cov(e) = {l ∈ L : e ∈ T (l)}

Folklore
S ⊆ L is a feasible solution for TAP iff
S ∩ cov(e) 6= ∅, for all e ∈ E
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An IP for Tree Augmentation

I Introduce indicator variable xl for each l ∈ L
I LP relaxation of IP:

min
∑

l
wlxl (P)

s.t.
∑

l∈cov(e)
xl ≥ 1 (e ∈ E)

x ≥ 0
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An IP for Tree Augmentation

I Introduce indicator variable xl for each l ∈ L
I LP relaxation of IP:

min
∑

l
wlxl (P)

s.t.
∑

l∈cov(e)
xl ≥ 1 (e ∈ E)

x ≥ 0

In what follows we let A be the coefficient matrix for the above
LP, and thus (P) can be rewritten as

min{wT x : Ax ≥ 1, x ≥ 0}
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Easy WTAP Instances

I Pick an arbitrary fixed root r ∈ V

I Three types of links: l = (u, v) is ...

I an up-link if u is an ancestor of v in T ,
I a cross-link if T (l) contains r , and
I an in-link otherwise

r

cross-link

up-link

in-link
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I Three types of links: l = (u, v) is ...

I an up-link if u is an ancestor of v in T ,
I a cross-link if T (l) contains r , and
I an in-link otherwise

Folklore Fact
Coefficient matrix A of LP (P) is network
matrix for up-link-only WTAP instances.
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Easy WTAP Instances

I Pick an arbitrary fixed root r ∈ V
I Three types of links: l = (u, v) is ...

I an up-link if u is an ancestor of v in T ,
I a cross-link if T (l) contains r , and
I an in-link otherwise

Folklore Fact
Coefficient matrix A of LP (P) is network
matrix for up-link-only WTAP instances.

→ (P) is integral in “up-link only” instances.

r

cross-link

up-link

in-link
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A Simple 2-Approximation for WTAP

I Given an instance (T ,w) of
WTAP, pick an arbitrary
root r ∈ V (T )

I For a link l = (u, v) let the
lca(u, v) be the lowest
common ancestor of u and v
in the r-rooted tree T

I Obtain a new instance
(T ,w′) by replacing each
cross link l = (u, v) by two
up-links (u, lca(u, v)) and
(v, lca(u, v)) of the same
cost

l

l0

l00

u v

lca(u, v)
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A Simple 2-Approximation for WTAP

I The new instance is up-link
only and hence (P) is
integral

I Note: optT ,w′ ≤ 2 optT ,w

I Gives a 2-approximation for
WTAP, and this is best
known!

I Also shows that integrality
gap of standard LP (P) is at
most .
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A Simple 2-Approximation for WTAP

I The new instance is up-link
only and hence (P) is
integral

I Note: optT ,w′ ≤ 2 optT ,w

I Gives a 2-approximation for
WTAP, and this is best
known!

I Also shows that integrality
gap of standard LP (P) is at
most 2∗. l
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u v
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∗Shadow Completeness

It is sometimes convenient to
assume that our WTAP instances
are shadow complete:

l ∈ L −→ l ′ ∈ L,

whenever l ′ spans a subset of l’s
edges of T

l

l0
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∗Shadow Completeness

It is sometimes convenient to
assume that our WTAP instances
are shadow complete:

l ∈ L −→ l ′ ∈ L,

whenever l ′ spans a subset of l’s
edges of T

Clearly: assumption is w.l.o.g.

l

l0
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Star Shaped Instances

I A WTAP instance (T ,w) is
star shaped if all links l ∈ L
cover r for some (arbitrary)
root node r ∈ V

I Note: S ⊆ L is feasible iff
all leaf edges are covered

I WTAP instance is
edge-cover in disguise: pick
a minimum-weight collection
of links that covers all leaf
vertices

r
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Star Shaped Instances

I Edge-cover is
polynomial-time solvable →
Star shaped WTAP
instances are
polynomial-time solvable

I (P) for such instances is
equivalent to the fractional
edge-cover LP

I Fractional edge-cover LP
has integrality gap 4/3

I There is an exact, tractable
LP for edge-cover

r
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instances are
polynomial-time solvable

I (P) for such instances is
equivalent to the fractional
edge-cover LP

I Fractional edge-cover LP
has integrality gap 4/3

I There is an exact, tractable
LP for edge-cover

min cT x
s.t.

∑
l∈cov(e)

xl ≥ 1

(leaf edges e)
x ≥ 0
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Recall: Tree Augmentation Formulation

I Introduce indicator variable xl for each l ∈ L
I LP relaxation of IP:

min
∑

l
wlxl (P)

s.t.
∑

l∈cov(e)
xl ≥ 1 (e ∈ E)

x ≥ 0
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Integrality Gap Example for (P)

I the figure shows tree Tk for k = 5 and unit weight links
(dashed)

I The edge-labels of the links give a solution x for (P) of value
2k/3 + 1 = 13/3

I The best integral solution has value k + 1 = 6.
→ the integrality gap of (P) is ≈ 3(k + 1)/2k and thus tends
to 3/2 for large k
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I the figure shows tree Tk for k = 5 and unit weight links
(dashed)

I The edge-labels of the links give a solution x for (P) of value
2k/3 + 1 = 13/3

I The best integral solution has value k + 1 = 6.
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Integrality Gap Example for (P)

Theorem [Cheriyan, Karloff, Khandekar, K. ’08]

LP (P) has integrality gap at least 3/2.
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TAP/WTAP Status Quo

I [Fredrickson & Jàjà ’81] 2-apx of WTAP (there are several
other ways of getting the same guarantee)

I [Kortsarz & Nutov ’16] Intricate combinatorial 3/2-apx for
TAP (based upon [Even, Feldmann, Nutov, Kortsarz ’01])

I [Cheriyan & Gao ’15] Combinatorial (3/2 + ε)-apx for TAP
based upon SDP lowerbound

I [Adjiashvili ’17] LP-based 1.96-approximation for WTAP
where link weights are in [1,M ] for a fixed M
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I [Fredrickson & Jàjà ’81] 2-apx of WTAP (there are several
other ways of getting the same guarantee)

I [Kortsarz & Nutov ’16] Intricate combinatorial 3/2-apx for
TAP (based upon [Even, Feldmann, Nutov, Kortsarz ’01])

I [Cheriyan & Gao ’15] Combinatorial (3/2 + ε)-apx for TAP
based upon SDP lowerbound

I [Adjiashvili ’17] LP-based 1.96-approximation for WTAP
where link weights are in [1,M ] for a fixed M
Also: 5/3 + ε in TAP special case

Approximate Tree Augmentation Introduction



TAP/WTAP Status Quo

I [Fredrickson & Jàjà ’81] 2-apx of WTAP (there are several
other ways of getting the same guarantee)

I [Kortsarz & Nutov ’16] Intricate combinatorial 3/2-apx for
TAP (based upon [Even, Feldmann, Nutov, Kortsarz ’01])

I [Cheriyan & Gao ’15] Combinatorial (3/2 + ε)-apx for TAP
based upon SDP lowerbound

I [Adjiashvili ’17] LP-based 1.96-approximation for WTAP
where link weights are in [1,M ] for a fixed M
Also: 5/3 + ε in TAP special case

Comment: Adjiashvili’s results are with respect to a stronger
TAP LP
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TAP/WTAP Our Results

Theorem [Fiorini, Groß, K., Sanità ’17]

There is an LP-relative (3/2 + ε) approximation for WTAP for any
small ε > 0 in the bounded link cost setting.
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Theorem [Fiorini, Groß, K., Sanità ’17]

There is an LP-relative (3/2 + ε) approximation for WTAP for any
small ε > 0 in the bounded link cost setting.

I We follow Adjiashvili’s framework

I Add certain subclass of rank-1 Chvátal-Gomory cutting planes
to Adjiashvili’s LP (maintaining tractability)

I Strongest LP-relative results for TAP/WTAP to date
I (Fairly) simple algorithms and analysis
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Adjiashvili’s Framework
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Strengthening the LP

I Tree T = (V ,E), and constant γ
(later chosen to be O(M/ε2) for
small ε > 0)

I S ⊆ E is a γ-bundle if it can be
covered by at most γ paths in T

I Easy observations:
(i) γ-bundles are forests with at

most 2γ leaves, but their number
of edges need not be constant

(ii) there are no more than
(|V |

2
)γ

γ-bundles

I optB: optimum weight of a WTAP
solution for γ-bundle B

2-bundle
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Strengthening the LP

Theorem [Adjiashvili ’17]

Let B be a forest with at most k leaves.
→ can compute optB in time |V |kO(1) .

2-bundle
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Strengthening the LP

Theorem [Adjiashvili ’17]

Let B be a forest with at most k leaves.
→ can compute optB in time |V |kO(1) .

Implies: can compute optB in polynomial time
for γ-bundles B and fixed γ

2-bundle
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Strengthening the LP

Theorem [Adjiashvili ’17]

Let B be a forest with at most k leaves.
→ can compute optB in time |V |kO(1) .

Implies: can compute optB in polynomial time
for γ-bundles B and fixed γ

Strengthen (P) by adding constraints:∑
l ∈cov(B)

wlxl ≥ optB (B ∈ Bγ)

Bγ : set of γ-bundles

2-bundle
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Strengthening the LP

min
∑

l
wlxl (P1)

s.t.
∑

l ∈cov(e)
xl ≥ 1 (e ∈ E)

∑
l ∈cov(B)

wlxl ≥ optB (B ∈ Bγ)

x ≥ 0

Consequence from earlier discussion: can solve (P1) in polynomial
time for fixed γ.
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Birdseye View of Adjiashvili

I Goal: round solution x to P1.

I Facilitate this by decomposing ...

(i) T into subtrees T1, . . . ,T q, and

(ii) x into x1, . . . , xq

T 1

T 2

T 3
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I Goal: round solution x to P1.
I Facilitate this by decomposing ...

(i) T into subtrees T1, . . . ,T q, and

(ii) x into x1, . . . , xq

such that ...

(i) x i is feasible for P1 in instance
induced by T i ,

(ii)
∑q

i=1 wTx i ≤ (1 + ε)wTx for
small ε > 0, and,

(iii) structure of T i is easier

T 1

T 2

T 3
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Birdseye View of Adjiashvili

I Let x be a solution to P1

I May assume that all edges e
of T are lightly covered:
x(cov(e)) = O(1/ε)

I Repeatedly pick edge
u1u2 ∈ T whose removal
creates subtrees T 1 and T 2

I Split x into x1 and x2

feasible for P1 in induced
subinstances, by cloning
links that cover u1u2

u2

u1

T 1

T 2
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Birdseye View of Adjiashvili

I Edge u1u2 is lightly covered:
x(cov(u1u2)) = O(1/ε)
→ cost of links covering this
edge is O(M/ε)

I Pick α-thin u1u2: links
entirely in subtree T i have
x-weight at least α ≈ M/ε2

I Can now charge weight
increase due to x-splitting to
x-weight of links in the
decomposition parts

u2

u1

T 1

T 2
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decomposition parts
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Birdseye View of Adjiashvili

Repeated decomposition creates
I subtrees T 1,T 2, . . . ,T q ,

and
I independent solutions

x1, x2, . . . , xq for (P1)

T 1

T 2

T 3

Approximate Tree Augmentation Adjiashvili’s Framework



Birdseye View of Adjiashvili

I Round feasible solution x i

for each 1 ≤ i ≤ k
independently

I Return the union of
solutions for sub-instances

T 1

T 2

T 3
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Birdseye View of Adjiashvili

I Round feasible solution x i

for each 1 ≤ i ≤ k
independently

I Return the union of
solutions for sub-instances

T 1

T 2

T 3
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Birdseye View of Adjiashvili

Each (T i , x i) will turn out to be
β-simple:

I There is a center vertex
v ∈ V (T i) whose removal
breaks T i into subtrees
K1, . . . ,Kq

I Each Kj has a at most β
leaves, and

I The fractional x i-weight of
links inside Kj is at most β

I Will choose
α, β ≈ O(M/ε2).

Ti

K1 K2

K3

v

in cross
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Ti

K1 K2

K3

v

in cross

Approximate Tree Augmentation Adjiashvili’s Framework



Solving Sub-instance (T i , x i)

I Define supp(x i) as the set of
links with positive x i-value

I Each uv ∈ supp(x i) is ...

I an in-link if u and v lie in
Kj for some j → I

I a cross-link otherwise
→ C

I Will use the better of two
rounding methods

Ti

K1 K2

K3

v

in cross
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I Each uv ∈ supp(x i) is ...
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Rounding Method 1 – Inlink-Heavy Case

Theorem [Adjiashvili ’17]

There is an algorithm that computes a
set S of links covering T i such that

c(S) ≤
∑
l∈I

wlx i
l + 2

∑
l∈C

wlx i
l

Ti

K1 K2

K3

v

in cross
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Theorem [Adjiashvili ’17]

There is an algorithm that computes a
set S of links covering T i such that

c(S) ≤
∑
l∈I

wlx i
l + 2

∑
l∈C

wlx i
l

Sketch:
I Create new solution y from x i by

splitting each cross-link at center v;

Ti

K1 K2

K3

v

in cross
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Rounding Method 1 – Inlink-Heavy Case

Theorem [Adjiashvili ’17]

There is an algorithm that computes a
set S of links covering T i such that

c(S) ≤
∑
l∈I

wlx i
l + 2

∑
l∈C

wlx i
l

Sketch:
I Create new solution y from x i by

splitting each cross-link at center
v; easy to see:

wT y ≤
∑
l∈I

wlx i
l + 2

∑
l∈C

wlx i
l

Ti

K1 K2

K3

v

in cross
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Rounding Method 1 – Inlink-Heavy Case

I Add center v to instance → K i

I Note that y projected onto links
covering K i is a feasible solution
for this sub-instance

I Can show: y satisfies bundle
constraints, and that K i is a
bundle

I Implies: fractional cost of y is as
large as optimum solution for K i

(which can be computed
efficiently).

Ti

K1 K2

K3

v

in cross
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Rounding Method 2 – Crosslink-Heavy Case

Theorem [Adjiashvili ’17]

There is an algorithm that computes a set S of links covering T i

such that

c(S) ≤ 2λ
∑
l∈I

wlx i
l + 4λ

3(λ− 1)
∑
l∈C

wlx i
l

for any constant λ > 1.
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Theorem [Adjiashvili ’17]

There is an algorithm that computes a set S of links covering T i

such that

c(S) ≤ 2λ
∑
l∈I

wlx i
l + 4λ

3(λ− 1)
∑
l∈C

wlx i
l

for any constant λ > 1.

I Let Eλ be all edges e ∈ T i that have 1/λ inlink coverage:

∑
l∈I∩cov(e)

x i
l ≥

1
λ

I Can cover edges in Eλ at cost no larger than 2λ
∑

l∈I wlx i
l
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Rounding Method 2 – Crosslink-Heavy Case

I Contract all edges in Eλ →
T̄ i , and delete all inlinks

I Observe:

(i) The resulting WTAP
instance is star-shaped,
and

(ii) z = λ/(λ− 1) · x i is now
feasible for original TAP
LP (P)

I Hence: there is a solution
S ⊆ L for this instance of
cost no more than

4λ
3(λ− 1)

∑
l∈C

wlx i
l

v

E�
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Adjiashvili’s Method: Wrapping Up

I Have seen: for the instance induced by T i , can compute
feasible solution S of links of cost

min{
∑
l∈I

wlx i
l + 2

∑
l∈C

wlx i
l , 2λ

∑
l∈I

wlx i
l + 4λ

3(λ− 1)
∑
l∈C

wlx i
l }

for any γ > 1
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Adjiashvili’s Method: Wrapping Up

I Have seen: for the instance induced by T i , can compute
feasible solution S of links of cost

min{
∑
l∈I

wlx i
l + 2

∑
l∈C

wlx i
l , 2λ

∑
l∈I

wlx i
l + 4λ

3(λ− 1)
∑
l∈C

wlx i
l }

for any γ > 1

Theorem [Adjiashvili ’17]

Choosing λ = 3 +
√

5 and simple numerical optimization yields
that algorithm is (1.964 + ε)-approximate for WTAP. For TAP this
can be strengthened to (5/3 + ε).
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Improving Adjiashvili’s Algorithm

Approximate Tree Augmentation Improving on Adjiashvili’s Algorithm



The Idea

I Rounding Method 2 eliminates inlinks; what remains is an
edge-cover instance in disguise

I The 4/3 term in the approximation guarantee stems from the
integrality gap of the fractional edge-cover LP ≡ TAP LP for
star-shaped instances

c(S) ≤ 2λ
∑
l∈I

wlx i
l + 4λ

3(λ− 1)
∑
l∈C

wlx i
l (?)

I Edge-cover has of course tractable exact linear description
I Improve the guarantee in (?) by strengthening (P1) through

CG cuts!
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The Idea

I Rounding Method 2 eliminates inlinks; what remains is an
edge-cover instance in disguise

I The 4/3 term in the approximation guarantee stems from the
integrality gap of the fractional edge-cover LP ≡ TAP LP for
star-shaped instances

c(S) ≤ 2λ
∑
l∈I

wlx i
l + 4λ

3(λ− 1)
∑
l∈C

wlx i
l (?)

I Edge-cover has of course tractable exact linear description ...
obtained by adding certain rank-1 Chvátal-Gomory cuts to the
standard LP.

I Improve the guarantee in (?) by strengthening (P1) through
CG cuts!
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Chvátal-Gomory Cuts for TAP

Recap: Bundle LP formulation for WTAP:

min
∑

l
wlxl (P1)

s.t.
∑

l ∈cov(e)
xl ≥ 1 (e ∈ E)

∑
l ∈cov(B)

wlxl ≥ optB (B ∈ Bγ)

x ≥ 0

Approximate Tree Augmentation Improving on Adjiashvili’s Algorithm



Chvátal-Gomory Cuts for TAP

I The inequality

∑
e∈E

λex(cov(e)) +
∑
l∈L

µlxl ≥


∑
e∈E

λe

 , (?)

where

I λ ∈ {0, 1/2}E and µ ∈ {0, 1/2}L, and
I the left-hand side coefficients are integral

I Such cuts are valid for the IP corresponding to P1.
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Chvátal-Gomory Cuts for TAP

I The inequality

∑
e∈E

λex(cov(e)) +
∑
l∈L

µlxl ≥


∑
e∈E

λe

 , (?)

where
I λ ∈ {0, 1/2}E and µ ∈ {0, 1/2}L, and
I the left-hand side coefficients are integral

is called a {0, 1/2}-CG cut

I Such cuts are valid for the IP corresponding to P1.
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Chvátal-Gomory Cuts for TAP

I The inequality

∑
e∈E

λex(cov(e)) +
∑
l∈L

µlxl ≥


∑
e∈E

λe

 , (?)

where
I λ ∈ {0, 1/2}E and µ ∈ {0, 1/2}L, and
I the left-hand side coefficients are integral

is called a {0, 1/2}-CG cut
I Such cuts are valid for the IP corresponding to P1.
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Chvátal-Gomory Cuts for TAP

I Constraints (?) have a nicer
graphical representation.

I For a set S ⊆ V , let δ(S) be the
edges in T with exactly one
endpoint in S

I Let π(S) be the multiset of links
that cover edges in δ(S),

I For S with odd |δ(S)| we rewrite
(?) as

x(π(S)) ≥ (|δ(S)|+ 1)/2

l1

l2

1

2

1
l3

Approximate Tree Augmentation Improving on Adjiashvili’s Algorithm
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Chvátal-Gomory Cuts for TAP

I Constraints (?) have a nicer
graphical representation.

I For a set S ⊆ V , let δ(S) be the
edges in T with exactly one
endpoint in S

I Let π(S) be the multiset of links
that cover edges in δ(S), the
multiplicity of l is

d|{e ∈ δ(S) : l ∈ cov(e)}|/2e

I For S with odd |δ(S)| we rewrite
(?) as

x(π(S)) ≥ (|δ(S)|+ 1)/2

l1

l2

1

2

1
l3

Approximate Tree Augmentation Improving on Adjiashvili’s Algorithm
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Odd Cut Bundle LP

min
∑

l
wlxl (P2)

s.t. x(π(S)) ≥ |δ(S)|+ 1
2 (S ⊆ V , |δ(S)| odd) (?)∑

l ∈cov(B)
wlxl ≥ optB (B ∈ Bγ)

x ≥ 0
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Odd Cut Bundle LP

min
∑

l
wlxl (P2)

s.t. x(π(S)) ≥ |δ(S)|+ 1
2 (S ⊆ V , |δ(S)| odd) (?)∑

l ∈cov(B)
wlxl ≥ optB (B ∈ Bγ)

x ≥ 0

Theorem [Caprara, Fischetti ’96]

Inequalities (?) can be separated efficiently, and hence the (P2)
can be solved efficiently as well for constant γ.
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Rounding Method 2- Another Look

I Obtain the odd-cut LP by dropping the bundle constraints
from (P2)
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Rounding Method 2- Another Look

I Obtain the odd-cut LP by dropping the bundle constraints
from (P2)

Key-Theorem [FGKS’17]

The odd-cut LP is integral for WTAP instances with only up- and
cross-links.
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Rounding Method 2- Another Look

I Obtain the odd-cut LP by dropping the bundle constraints
from (P2)

Key-Theorem [FGKS’17]

The odd-cut LP is integral for WTAP instances with only up- and
cross-links.

Consequences:
I We can compute a solution S of cost no more than

2
∑
l∈I

wlxl +
∑
l∈C

wlxl

for feasible solution x to the odd-cut LP

I Replacing P1 by P2 in Adjiashvili’s algorithm, x i can be shown
to be feasible for odd cut LP of the instance induced by T i
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Rounding Method 2- Another Look

I Obtain the odd-cut LP by dropping the bundle constraints
from (P2)

Key-Theorem [FGKS’17]

The odd-cut LP is integral for WTAP instances with only up- and
cross-links.

Consequences:
I We can compute a solution S of cost no more than

2
∑
l∈I

wlxl +
∑
l∈C

wlxl

for feasible solution x to the odd-cut LP
I Replacing P1 by P2 in Adjiashvili’s algorithm, x i can be shown

to be feasible for odd cut LP of the instance induced by T i
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Proving the KeyTheorem

I Define matrix M to be the
incidence matrix of a bidirected
graph if ∑

i
|Mij | ≤ 2,

for all j

I Then B is a binet matrix if

B = R−1S ,

where M = [SR] is the incidence
matrix of a bidirected graph

I with full row rank, and
I R is a basis of M


0 −2 1 0
0 0 −1 −1
1 0 0 0
−1 0 0 −1


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Proving the KeyTheorem

Theorem [Appa & Kotnyek ’04,Edmonds & Johnson ’70, ’73]

For binet matrix B ∈ Zm×n , b ∈ Zm , the integer hull of

P = {x : Bx ≥ b, x ≥ 0}

is described by the {0, 1/2} CG cuts.
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Proving the KeyTheorem

Theorem [Appa & Kotnyek ’04,Edmonds & Johnson ’70, ’73]

For binet matrix B ∈ Zm×n , b ∈ Zm , the integer hull of

P = {x : Bx ≥ b, x ≥ 0}

is described by the {0, 1/2} CG cuts.

As you expect: The incidence matrix A of standard TAP LP (P)
in instances with only up- and cross-links is a binet matrix!
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Proving the KeyTheorem

Theorem [Appa & Kotnyek ’04,Edmonds & Johnson ’70, ’73]

For binet matrix B ∈ Zm×n , b ∈ Zm , the integer hull of

P = {x : Bx ≥ b, x ≥ 0}

is described by the {0, 1/2} CG cuts.

As you expect: The incidence matrix A of standard TAP LP (P)
in instances with only up- and cross-links is a binet matrix!

−→ odd-cut LP (P1) is integral in these cases
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Improved Algorithm

Rounding Method 1

x feasible solution to (P2), can compute S with

c(S) ≤
∑
l∈I

wlxl + 2
∑
l∈C

wlxl

Rounding Method 2

x feasible solution to (P2), can compute S with

c(S) ≤ 2λ
∑
l∈I

wlx i
l + 4λ

3(λ− 1)
∑
l∈C

wlx i
l
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Improved Algorithm

Rounding Method 1

x feasible solution to (P2), can compute S with

c(S) ≤
∑
l∈I

wlxl + 2
∑
l∈C

wlxl

Rounding Method 2

x feasible solution to (P2), can compute S with

c(S) ≤ 2
∑
l∈I

wlxl +
∑
l∈C

wlxl

Approximate Tree Augmentation Improving on Adjiashvili’s Algorithm



Wrapping Up & Final Words

Theorem [FGKS’17]

There is a (3/2 + ε) approximation for WTAP in the bounded
weight setting.
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Wrapping Up & Final Words

Theorem [FGKS’17]

There is a (3/2 + ε) approximation for WTAP in the bounded
weight setting.

Open Questions:
I Make this work for arbitrary weights!

I Can we approximate TAP or WTAP to within 3/2− ε for
some ε > 0?

I What is the integrality gap of the natural LP?
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Wrapping Up & Final Words

Theorem [FGKS’17]

There is a (3/2 + ε) approximation for WTAP in the bounded
weight setting.

Open Questions:
I Make this work for arbitrary weights!
I Can we approximate TAP or WTAP to within 3/2− ε for

some ε > 0?
I What is the integrality gap of the natural LP?

Thanks!
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